957 resultados para Vehicle Dynamics Modeling.
Resumo:
Electronic energy transfer (EET) rate constants between a naphthalene donor and anthracene acceptor in [ZnL4a](ClO4)(2) and [ZnL4b](ClO4)(2) were determined by time-resolved fluorescence where L-4a and L-4b are the trans and cis isomers of 6-((anthracen-9-yl-methyl)amino)-6,13-dimethyl-13-((naphthalen-1-yl-methyl)amino)-1,4,8,11-tetraazacyclotetradecane, respectively. These isomers differ in the relative disposition of the appended chromophores with respect to the macrocyclic plane. The trans isomer has an energy transfer rate constant (k(EET)) of 8.7 x 10(8) s(-1), whereas that of the cis isomer is significantly faster (2.3 x 10(9) s(-1)). Molecular modeling was used to determine the likely distribution of conformations in CH3CN solution for these complexes in an attempt to identify any distance or orientation dependency that may account for the differing rate constants observed. The calculated conformational distributions together with analysis by H-1 NMR for the [ZnL4a](2+) trans complex in the common trans-III N-based isomer gave a calculated Forster rate constant close to that observed experimentally. For the [ZnL4b](2+) cis complex, the experimentally determined rate constant may be attributed to a combination of trans-Ill and trans-I N-based isomeric forms of the complex in solution.
Resumo:
O objetivo principal deste trabalho foi o estudo do transporte atmosférico de PM10 e SO2 em regiões costeiras urbanas usando modelos WRF/CMAQ. Duas regiões foram contempladas neste estudo. Uma é a Região da Grande Vitória (RGV), no estado do Espírito Santo, Brasil; a outra é a Região da Grande Dunkerque (RGD), no Departamento Nord Pas-de-Calais, França. A RGV é cercada por uma cadeia de montanhas paralela à costa, resultando num topografia complexa e acidentada. Já a RGD possui uma topografia muito mais suave. As entradas de dados para os modelos WRF/CMAQ englobaram o inventário de emissões de poluentes atmosféricos do IEMA-ES para a RGV, e o inventário de emissões no nível do solo de Nord Pas-de-Calais denominado ―Cadastre_totaux_3km_A2008 _M2010_V2_SNAPN2‖ para a RGD. Ambos os inventários apresentaram restrições, todavia. O inventário da RGV apresentou valores de ressuspensão em vias de tráfego elevados, em comparação com diversos estudos, e teve esses dados modificados. Os dados no nível do solo e a grande área de das células da grade (9 km2) do inventário da RGD não permitiram resultados satisfatórios de modelagem. A validação dos modelos foi realizada por comparação com resultados obtidos em duas campanhas experimentais: uma na cidade de Dunkerque, no norte da França, em setembro de 2009; a outra na cidade de Vitória, no sudeste do Brasil, em julho de 2012. Esses dados foram obtidos pelo uso de sistemas de Light Detection and Ranging (LIDAR) e Sonic Detection and Ranging (SODAR), bem como de Estações Meteorológicas de Superfície (EMS) e de monitoramento atmosférico. Os resultados deste trabalho mostraram que: a) existe uma necessidade de melhorias contínuas nos inventários regionais de emissões, adaptando-os para condições locais específicas e focando na obtenção de parâmetros necessários para modelagem fotoquímica; b) os valores de módulo e direção das velocidades obtidas na modelagem meteorológica influenciam fortemente os resultados da modelagem de concentração de poluentes; c) a qualidade do ar tanto na RGV quanto na RGD merece atenção, sobretudo no que diz respeito às concentrações de MP10. De acordo com os dados das estações de monitoramento, a situação parece mais crítica na RGD; d) a modelagem da RGV apresentou resultados mais satisfatórios do que a da RGD, de acordo com os resultados das validações; e) a entrada da brisa do mar provocou alterações significativas na concentração dos poluentes, o que pôde ser observado na análise da dinâmica da dispersão de MP10 e SO2. Esse fenômeno foi mais marcante na RGV, onde a entrada da brisa marítima provocou um movimento oscilatório na pluma de poluição, levando-a para os bairros mais densamente povoados do conglomerado urbano. Na RGD, a entrada da brisa não foi cotidiana e, no dia em que ela aconteceu, houve uma alteração de quase 180º na direção do movimento da pluma de poluição. Além do aumento da turbulência vertical, o qual já foi estudado por diversos autores, este estudo focou também na influência brisa do mar na dinâmica da pluma de dispersão de poluentes atmosféricos em regiões costeiras.
Resumo:
The expectation that technological returns from defense expenditure through acquisition, international cooperation and domestic research would further national development underappreciates the different technological dynamic of the armed services. This paper outlines the technological dynamic the stems from fighting in the air, at sea and on land, exemplifying consequences for the case of acquisition.
Resumo:
Experimental scratch resistance testing provides two numbers: the penetration depth Rp and the healing depth Rh. In molecular dynamics computer simulations, we create a material consisting of N statistical chain segments by polymerization; a reinforcing phase can be included. Then we simulate the movement of an indenter and response of the segments during X time steps. Each segment at each time step has three Cartesian coordinates of position and three of momentum. We describe methods of visualization of results based on a record of 6NX coordinates. We obtain a continuous dependence on time t of positions of each of the segments on the path of the indenter. Scratch resistance at a given location can be connected to spatial structures of individual polymeric chains.
Resumo:
Indentation tests are used to determine the hardness of a material, e.g., Rockwell, Vickers, or Knoop. The indentation process is empirically observed in the laboratory during these tests; the mechanics of indentation is insufficiently understood. We have performed first molecular dynamics computer simulations of indentation resistance of polymers with a chain structure similar to that of high density polyethylene (HDPE). A coarse grain model of HDPE is used to simulate how the interconnected segments respond to an external force imposed by an indenter. Results include the time-dependent measurement of penetration depth, recovery depth, and recovery percentage, with respect to indenter force, indenter size, and indentation time parameters. The simulations provide results that are inaccessible experimentally, including continuous evolution of the pertinent tribological parameters during the entire indentation process.
Resumo:
Part replacement and repair is needed in structures with moving parts because of scratchability and wear. In spite of some accumulation of experimental evidence, scratch resistance is still not well understood. We have applied molecular dynamics to study scratch resistance of amorphous polymeric materials through computer simulations. As a first approach, a coarse grain model was created for high density polyethylene at the mesoscale. We have also extended the traditional approach and used real units rather than reduced units (to our knowledge, for the first time), which enable an improved quantification of simulation results. The obtained results include analysis of penetration depth, residual depth and recovery percentage related to indenter force and size. Our results show there is a clear effect from these parameters on the tribological properties. We also discuss a "crooked smile" effect on the scratched surface and the reasons for its appearance.
Resumo:
By identifying energy waste streams in vehicles fuel consumption and introducing the concept of lean driving systems, a technological gap for reducing fuel consumption was identified. This paper proposes a solution to overcome this gap, through a modular vehicle architecture aligned with driving patterns. It does not address detailed technological solutions; instead it models the potential effects in fuel consumption through a modular concept of a vehicle and quantifies their dependence on vehicle design parameters (manifesting as the vehicle mass) and user behavior parameters (driving patterns manifesting as the use of a modular car in lighter and heavier mode, in urban and highway cycles). Modularity has been functionally applied in automotive industry as manufacture and assembly management strategies; here it is thought as a product development strategy for flexibility in use, driven by environmental concerns and enabled by social behaviors. The authors argue this concept is a step forward in combining technological solutions and social behavior, of which eco-driving is a vivid example, and potentially evolutionary to a lean, more sustainable, driving culture.
Resumo:
In this work it is demonstrated that the capacitance between two cylinders increases with the rotation angle and it has a fundamental influence on the composite dielectric constant. The dielectric constant is lower for nematic materials than for isotropic ones and this can be attributed to the effect of the filler alignment in the capacitance. The effect of aspect ratio in the conductivity is also studied in this work. Finally, based on previous work and by comparing to results from the literature it is found that the electrical conductivity in this type of composites is due to hopping between nearest fillers resulting in a weak disorder regime that is similar to the single junction expression.
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.