994 resultados para Variance estimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt was made to calculate zooplankton production from weights and settled volumes and from the life cycle of some copepods. Biomass data were recorded during several years from 24 monthly cruises and from a coastal station sampled biweekly. Dry weight data were directly measured or were calculated from the settled volumes using a linear regression. They range, on an average, from 0.965 to 5.56 g m-2 day-1 from the shore line to the edge of the continental shelf. The mean life-span of the cohorts of 12 species of copepods is about 20 days. It is assumed that only 1 spawn occurs per generation-time and that the standing stock is turned-over during the life span of a cohort. The production ranges from 48.2 to 278 mg dry weight m-2 day-1 or 17.9 to 103 mg C m-2 day-1, according to the depth of the studied areas. One third of carnivorous production occurs among the copepods. So, it is assumed that the herbivorous and omnivorous production is about 2/3 of the total zooplanktonic production. This would be a more accurate estimate of secondary production. The standing stock of zooplankton and fishes are in the same order of magnitude; the ratio zooplanktonic production/total fishery is 0.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sablefish (Anoplopoma fimbria) are often caught incidentally in longline fisheries and discarded, but the extent of mortality after release is unknown, which creates uncertainty for estimates of total mortality. We analyzed data from 10,427 fish that were tagged in research surveys and recovered in surveys and commercial fisheries up to 19 years later and found a decrease in recapture rates for fish originally captured at shallower depths (210–319 m) during the study, sustaining severe hooking injuries, and sustaining amphipod predation injuries. The overall estimated discard mortality rate was 11.71%. This estimate is based on an assumed survival rate of 96.5% for fish with minor hooking injuries and the observed recapture rates for sablefish at each level of severity of hook injury. This estimate may be lower than what actually occurs in commercial fisheries because fish are likely not handled as carefully as those in our study. Comparing our results with data on the relative occurrence of the severity of hooking injuries in longline fisheries may lead to more accurate accounting of total mortality attributable to fishing and to improved management of this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantification of predator-prey body size relationships is essential to understanding trophic dynamics in marine ecosystems. Prey lengths recovered from predator stomachs help determine the sizes of prey most influential in supporting predator growth and to ascertain size-specific effects of natural mortality on prey populations (Bax, 1998; Claessen et al., 2002). Estimating prey size from stomach content analyses is often hindered because of the degradation of tissue and bone by digestion. Furthermore, reconstruction of original prey size from digested remains requires species-specific reference materials and techniques. A number of diagnostic guides for freshwater (Hansel et al., 1988) and marine (Watt et al., 1997; Granadeiro and Silva, 2000) prey species exist; however they are limited to specific geographic regions (Smale et al., 1995; Gosztonyi et al., 2007). Predictive equations for reconstructing original prey size from diagnostic bones in marine fishes have been developed in several studies of piscivorous fishes of the Northwest Atlantic Ocean (Scharf et al., 1998; Wood, 2005). Conversely, morphometric relationships for cephalopods in this region are scarce despite their importance to a wide range of predators, such as finfish (Bowman et al., 2000 ; Staudinger, 2006), elasmobranchs (Kohler, 1987), and marine mammals (Gannon et al., 1997; Williams, 1999).