942 resultados para Variable Sampling Interval Control Charts
Resumo:
PURPOSE: Conventional staging methods are inadequate to identify patients with stage II colon cancer (CC) who are at high risk of recurrence after surgery with curative intent. ColDx is a gene expression, microarray-based assay shown to be independently prognostic for recurrence-free interval (RFI) and overall survival in CC. The objective of this study was to further validate ColDx using formalin-fixed, paraffin-embedded specimens collected as part of the Alliance phase III trial, C9581.
PATIENTS AND METHODS: C9581 evaluated edrecolomab versus observation in patients with stage II CC and reported no survival benefit. Under an initial case-cohort sampling design, a randomly selected subcohort (RS) comprised 514 patients from 901 eligible patients with available tissue. Forty-nine additional patients with recurrence events were included in the analysis. Final analysis comprised 393 patients: 360 RS (58 events) and 33 non-RS events. Risk status was determined for each patient by ColDx. The Self-Prentice method was used to test the association between the resulting ColDx risk score and RFI adjusting for standard prognostic variables.
RESULTS: Fifty-five percent of patients (216 of 393) were classified as high risk. After adjustment for prognostic variables that included mismatch repair (MMR) deficiency, ColDx high-risk patients exhibited significantly worse RFI (multivariable hazard ratio, 2.13; 95% CI, 1.3 to 3.5; P < .01). Age and MMR status were marginally significant. RFI at 5 years for patients classified as high risk was 82% (95% CI, 79% to 85%), compared with 91% (95% CI, 89% to 93%) for patients classified as low risk.
CONCLUSION: ColDx is associated with RFI in the C9581 subsample in the presence of other prognostic factors, including MMR deficiency. ColDx could be incorporated with the traditional clinical markers of risk to refine patient prognosis.
Resumo:
OBJECTIVES: To conduct a preliminary study comparing different trauma and clinical populations on types of shame coping style and levels of state shame and guilt.
METHODS: A mixed independent groups/correlational design was employed. Participants were recruited by convenience sampling of 3 clinical populations-complex trauma (n = 65), dissociative identity disorder (DID; n = 20), and general mental health (n = 41)-and a control group of healthy volunteers (n = 125). All participants were given (a) the Compass of Shame Scale, which measures the four common shame coping behaviors/styles of "withdrawal," "attack self," "attack other," and "avoidance," and (b) the State Shame and Guilt Scale, which assesses state shame, guilt, and pride.
RESULTS: The DID group exhibited significantly higher levels of "attack self," "withdrawal," and "avoidance" relative to the other groups. The complex trauma and general mental health groups did not differ on any shame variable. All three clinical groups had significantly greater levels of the "withdrawal" coping style and significantly impaired shame/guilt/pride relative to the healthy volunteers. "Attack self" emerged as a significant predictor of increased state shame in the complex trauma, general mental health, and healthy volunteer groups, whereas "withdrawal" was the sole predictor of state shame in the DID group.
CONCLUSIONS: DID emerged as having a different profile of shame processes compared to the other clinical groups, whereas the complex trauma and general mental health groups had comparable shame levels and variable relationships. These differential profiles of shame coping and state shame are discussed with reference to assessment and treatment. (PsycINFO Database Record
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
This work introduces a tessellation-based model for the declivity analysis of geographic regions. The analysis of the relief declivity, which is embedded in the rules of the model, categorizes each tessellation cell, with respect to the whole considered region, according to the (positive, negative, null) sign of the declivity of the cell. Such information is represented in the states assumed by the cells of the model. The overall configuration of such cells allows the division of the region into subregions of cells belonging to a same category, that is, presenting the same declivity sign. In order to control the errors coming from the discretization of the region into tessellation cells, or resulting from numerical computations, interval techniques are used. The implementation of the model is naturally parallel since the analysis is performed on the basis of local rules. An immediate application is in geophysics, where an adequate subdivision of geographic areas into segments presenting similar topographic characteristics is often convenient.
Resumo:
In the last years the need to develop more environmentally friendly and efficient cars as led to the development of several technologies to improve the performance of internal combustion engines, a large part of the innovations are focused in the auxiliary systems of the engine, including, the oil pump, this is an element of great importance in the dynamics of the engine as well a considerable energy consumer. Most solutions for oil pumps to this day are fixed displacement, for medium and high speeds, the pump flow rate is higher than the needs of the engine, this excess flow leads to the need for recirculation of the fluid which represents a waste of energy. Recently, technological advances in this area have led to the creation of variable displacement oil pumps, these have become a 'must have' due to the numerous advantages they bring, although the working principle of vane or piston pumps is relatively well known, the application of this technology for the automotive industry is new and brings new challenges. The focus of this dissertation is to develop a new concept of variable displacement system for automotive oil pumps. The main objective is to obtain a concept that is totally adaptable to existing solutions on the market (engines), both dimensionally as in performance specifications, having at the same time an innovative mechanical system for obtaining variable displacement. The developed design is a vane pump with variable displacement going in line with existing commercial solutions, however, the variation of the eccentricity commonly used to provide an variable displacement delivery is not used, the variable displacement is achieved without varying the eccentricity of the system but with a variation of the length of the pumping chamber. The principle of operation of the pump is different to existing solutions while maintaining the ability to integrate standard parts such as control valves and mechanical safety valves, the pump is compatible with commercial solutions in terms of interfaces for connection between engine systems and pump. A concept prototype of the product was obtained in order to better evaluate the validity of the concept. The developed concept represents an innovation in oil pumps design, being unique in its mechanical system for variable displacement delivery.
Resumo:
Purpose The aim of this study was to test the effects of sprint interval training (SIT) on cardiorespiratory fitness and aerobic performance measures in young females. Methods Eight healthy, untrained females (age 21 ± 1 years; height 165 ± 5 cm; body mass 63 ± 6 kg) completed cycling peak oxygen uptake ( V˙O2V˙O2 peak), 10-km cycling time trial (TT) and critical power (CP) tests pre- and post-SIT. SIT protocol included 4 × 30-s “all-out” cycling efforts against 7 % body mass interspersed with 4 min of active recovery performed twice per week for 4 weeks (eight sessions in total). Results There was no significant difference in V˙O2V˙O2 peak following SIT compared to the control period (control period: 31.7 ± 3.0 ml kg−1 min−1; post-SIT: 30.9 ± 4.5 ml kg−1 min−1; p > 0.05), but SIT significantly improved time to exhaustion (TTE) (control period: 710 ± 101 s; post-SIT: 798 ± 127 s; p = 0.00), 10-km cycling TT (control period: 1055 ± 129 s; post-SIT: 997 ± 110 s; p = 0.004) and CP (control period: 1.8 ± 0.3 W kg−1; post-SIT: 2.3 ± 0.6 W kg−1; p = 0.01). Conclusions These results demonstrate that young untrained females are responsive to SIT as measured by TTE, 10-km cycling TT and CP tests. However, eight sessions of SIT over 4 weeks are not enough to provide sufficient training stimulus to increase V˙O2V˙O2 peak.
Resumo:
Traffic demand increases are pushing aging ground transportation infrastructures to their theoretical capacity. The result of this demand is traffic bottlenecks that are a major cause of delay on urban freeways. In addition, the queues associated with those bottlenecks increase the probability of a crash while adversely affecting environmental measures such as emissions and fuel consumption. With limited resources available for network expansion, traffic professionals have developed active traffic management systems (ATMS) in an attempt to mitigate the negative consequences of traffic bottlenecks. Among these ATMS strategies, variable speed limits (VSL) and ramp metering (RM) have been gaining international interests for their potential to improve safety, mobility, and environmental measures at freeway bottlenecks. Though previous studies have shown the tremendous potential of variable speed limit (VSL) and VSL paired with ramp metering (VSLRM) control, little guidance has been developed to assist decision makers in the planning phase of a congestion mitigation project that is considering VSL or VSLRM control. To address this need, this study has developed a comprehensive decision/deployment support tool for the application of VSL and VSLRM control in recurrently congested environments. The decision tool will assist practitioners in deciding the most appropriate control strategy at a candidate site, which candidate sites have the most potential to benefit from the suggested control strategy, and how to most effectively design the field deployment of the suggested control strategy at each implementation site. To do so, the tool is comprised of three key modules, (1) Decision Module, (2) Benefits Module, and (3) Deployment Guidelines Module. Each module uses commonly known traffic flow and geometric parameters as inputs to statistical models and empirically based procedures to provide guidance on the application of VSL and VSLRM at each candidate site. These models and procedures were developed from the outputs of simulated experiments, calibrated with field data. To demonstrate the application of the tool, a list of real-world candidate sites were selected from the Maryland State Highway Administration Mobility Report. Here, field data from each candidate site was input into the tool to illustrate the step-by-step process required for efficient planning of VSL or VSLRM control. The output of the tool includes the suggested control system at each site, a ranking of the sites based on the expected benefit-to-cost ratio, and guidelines on how to deploy the VSL signs, ramp meters, and detectors at the deployment site(s). This research has the potential to assist traffic engineers in the planning of VSL and VSLRM control, thus enhancing the procedure for allocating limited resources for mobility and safety improvements on highways plagued by recurrent congestion.
Resumo:
La higiene de los alimentos para el consumo humano es un derecho que tienen todas las personas, pues esto les evita daños a la salud. La incidencia de las enfermedades por transmisión alimentaria ha ido en aumento, y pueden llevar en muchos casos incluso hasta la muerte. Asimismo, hay efectos negativos en el deterioro de los alimentos, significan costos y pérdidas económicas para los países. Estas son razones por las que se deben tener sistemas que aseguren la higiene de los alimentos. Los riesgos alimentarios pueden ser de tipo microbiológico, residuos de plaguicidas, utilización inadecuada de los aditivos alimentarios, contaminantes químicos, incluidas las toxinas biológicas, adulteraciones. Así también se pueden incluir organismos genéticamente modificados, alérgenos, residuos de medicamentos veterinarios y hormonas. Por estas razones, es necesario un control eficaz de la higiene para evitar las enfermedades y por el daño en alimentos a la economía de un país. Cada vez que un consumidor paga por un alimento, bien sea para consumo inmediato o para un proceso de cocción y luego ser ingerido, espera que lo puede consumir sin ningún peligro, ya que confía en que las autoridades sanitarias encargadas en cada uno de los eslabones de la cadena alimenticia (Finca, Planta, Expendio, Comercio, Transporte) han desarrollado actividades que le den la garantía al consumidor de pagar por el producto e ingerirlo sin pensar en que afectará su salud. Hoy en día, se observa, como sigue en aumento los índices de Enfermedades Transmitidas por Alimentos (ETA´s), mientras que, los esfuerzos por disminuir e identificar las fallas en el aseguramiento de la inocuidad de los alimentos en todo el proceso son insuficientes. El Gobierno de Nicaragua, ha tomado conciencia y se está preparando para los próximos desafíos que presentará el comercio mundial en cuanto a garantizar productos de alta calidad e inocuidad. Por lo tanto, el MAG para mejorar y asegurar la inocuidad de los productos de origen animal y vegetal se ha basado en la implementación del sistema HACCP cuyo enfoque principal es la seguridad alimentaria y nutricional, en conjunto con la implementación de los programas prerrequisitos como son las Buenas Prácticas Agrícolas (BPA), Buenas Prácticas de manufactura (BPM), Programas de Operación y Sanitización (SOP's).(Picado, 2002).El objetivo del presente estudio de caso fue: Contrastar la aplicación de las normas Sistemas de Análisis de Peligro y Puntos Críticos de Control (HACCP) en el periodo 2014 – 2015, en el MATADERO NICA BEEF PACKERS S.A, que funciona en el municipio de Condega, Departamento de Estelí, Nicaragua. Para alcanzar el objetivo se aplicó una metodología comparativa entre un estudio anterior y las nuevas realidades generadas en la empresa, apoyándonos para tal efecto de técnicas e instrumentos aplicados por la ciencia como son: la entrevista, la observación, el análisis documental, y programas de aplicación Microsoft Word y Excel 2010, las que fueron utilizadas pertinentemente en su momento, permitiendo el procesamiento de datos y su posterior análisis. El punto de partida de este proceso investigativo fue la búsqueda de información relacionada al objeto de estudio, determinándose los tres puntos críticos de control y las variables que influyen en el fenómeno estudiado.. Las variables tomadas en cuenta fueron: Buenas prácticas de manufacturación, Procedimientos operativos estandarizados de Higiene, Análisis de riesgos, identificación y control de puntos críticos (HACCP). En lo concerniente a la primer variable las buenas prácticas de manufactura que realiza el personal de la empresa, se cumplen en un 91 % en ambos estudios, destacándose en forma ascendente las condiciones de edificio con el 94% y el personal con 93%; la segunda variable referida a los Procedimientos Operacionales Estándares (POE), se cumplen en un 88.65 %, ubicándose en un lugar privilegiado la salud de los trabajadores al tener 99% de cumplimiento. En promedio estos prerrequisitos generales se cumplen en un 89.82 %. La tercera variable las acciones correctivas de los PCC del sistema HACCP presentaron un 95.22% de cumplimiento, mostrando así que los equipos de trabajo de la empresa tienen un alto grado de conocimiento y la práctica requerida para las labores que realizan; en esta última sobresale el PCC N°2 que en cuanto a intervención antimicrobiano tuvo el 100% de cumplimiento, y un rango aceptable en la concentración de la solución de ácido orgánico de 1.5 a 2% y pH entre 3 y 4.4 unidades después del rociado,. En el PCC N°3 relacionada a la etapa de enfriamiento, se está cumpliendo con las normas establecidas en el reglamento HACCP, manteniendo temperatura de canales ≤ 8.33333 Grados Celsius, y 24 horas de refrigeración, impidiendo todas estas aplicaciones el desarrollo de bacterias patógenas.
Resumo:
This paper, based on the outcome of discussions at a NORMAN Network-supported workshop in Lyon (France) in November 2014 aims to provide a common position of passive sampling community experts regarding concrete actions required to foster the use of passive sampling techniques in support of contaminant risk assessment and management and for routine monitoring of contaminants in aquatic systems. The brief roadmap presented here focusses on the identification of robust passive sampling methodology, technology that requires further development or that has yet to be developed, our current knowledge of the evaluation of uncertainties when calculating a freely dissolved concentration, the relationship between data from PS and that obtained through biomonitoring. A tiered approach to identifying areas of potential environmental quality standard (EQS) exceedances is also shown. Finally, we propose a list of recommended actions to improve the acceptance of passive sampling by policy-makers. These include the drafting of guidelines, quality assurance and control procedures, developing demonstration projects where biomonitoring and passive sampling are undertaken alongside, organising proficiency testing schemes and interlaboratory comparison and, finally, establishing passive sampler-based assessment criteria in relation to existing EQS.
Resumo:
Global Network for the Molecular Surveillance of Tuberculosis 2010: A. Miranda (Tuberculosis Laboratory of the National Institute of Health, Porto, Portugal)
Resumo:
A dense grid of high- and very high resolution seismic data, together with piston cores and borehole data providing time constraints, enables us to reconstruct the history of the Bourcart canyon head in the western Mediterranean Sea during the last glacial/interglacial cycle. The canyon fill is composed of confined channel–levee systems fed by a series of successively active shelf fluvial systems, originating from the west and north. Most of the preserved infill corresponds to the interval between Marine Isotope Stage (MIS) 3 and the early deglacial (19 cal ka BP). Its deposition was strongly controlled by a relative sea level that impacted the direct fluvial/canyon connection. During a period of around 100 kyr between MIS 6 and MIS 2, the canyon “prograded” by about 3 km. More precisely, several parasequences can be identified within the canyon fill. They correspond to forced-regressed parasequences (linked to punctuated sea-level falls) topped by a progradational-aggradational parasequence (linked to a hypothetical 19-ka meltwater pulse (MWP)). The bounding surfaces between forced-regressed parasequences are condensed intervals formed during intervals of relative sediment starvation due to flooding episodes. The meandering pattern of the axial incision visible within the canyon head, which can be traced landward up to the Agly paleo-river, is interpreted as the result of hyperpycnal flows initiated in the river mouth in a context of increased rainfall and mountain glacier flushing during the early deglacial.