967 resultados para VIBRATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural single-crystal specimens of the herderite-hydroxylherderite series from Brazil, with general formula CaBePO4(F,OH), were investigated by electron microprobe, Raman, infrared and near-infrared spectroscopies. The minerals occur as secondary products in granitic pegmatites. Herderite and hydroxylherderite minerals show extensive solid solution formation. The Raman spectra of hydroxylherderite are characterized by bands at around 985 and 998 cm-1, assigned to ν1 symmetric stretching mode of the HOPO33- and PO43- units. Raman bands at around 1085, 1128 and 1138 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The set of Raman bands observed at 563, 568, 577, 598, 616 and 633 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and H2PO4 units. The OH Raman stretching vibrations of hydroxylherderite were observed ranging from 3626 cm-1 to 3609 cm-1. The infrared stretching vibrations of hydroxylherderites were observed between 3606 cm-1 and 3599 cm-1. By using a Libowitzky type function, hydrogen bond distances based upon the OH stretching bands were calculated. Characteristic NIR bands at around 6961 and 7054 cm-1 were assigned to the first overtone of the fundamental, whilst NIR bands at 10194 and 10329 cm-1 are assigned to the second overtone of the fundamental OH stretching vibration. Insight into the structure of the herderite-hydroxylherderite series is assessed by vibrational spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM/EDS) and X-ray diffraction (XRD) were used to characterize the morphology of synthetic goethite. The behavior of the hydroxyl/water molecular units of goethite and its thermally treated products were characterized using Fourier transform-infrared emission spectroscopy (FT-IES) and attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy. The results showed that all the expected vibrational bands between 4000 and 650 cm−1 including the resolved bands (3800–2200 cm−1) were confirmed. A band attributed to a new type of hydroxyl unit was found at 3708 cm−1 and assigned to the FeO–H stretching vibration without hydrogen bonding. This hydroxyl unit was retained up to the thermal treatment temperature of 500 °C. On the whole, seven kinds of hydroxyl units, involving three surface hydroxyls, a bulk hydroxyl, a FeO–H without hydrogen bonding, a nonstoichiometric hydroxyl and a reversed hydroxyl were observed, and three kinds of adsorbed water were found in/on goethite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral ettringite has been studied using a number of techniques, including XRD, SEM with EDX, thermogravimetry and vibrational spectroscopy. The mineral proved to be composed of 53% of ettringite and 47% of thaumasite in a solid solution. Thermogravimetry shows a mass loss of 46.2% up to 1000 °C. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1072 cm−1 attributed to a carbonate symmetric stretching mode, confirming the presence of thaumasite. The observation of multiple bands in the ν4 spectral region between 700 and 550 cm−1 offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3629 cm−1 is assigned to the OH unit stretching vibration and the broad feature at around 3487 cm−1 to water stretching bands. Vibrational spectroscopy enables an assessment of the molecular structure of natural ettringite to be made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chambersite is a manganese borate mineral with formula: MnB7O13Cl and occurs as colorless crystals in the monoclinic pyramidal crystal system. Raman bands at 902, 920, 942 and 963 cm-1 are assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1027, 1045, 1056, 1075 and 1091 cm-1 are attributed to the BCl in-plane bending modes. The intense infrared band at 866 cm-1 is assigned to the trigonal borate stretching modes. The Raman band at 660 cm-1 together with bands at 597, 642 679, 705 and 721 cm-1 are assigned to the trigonal and tetrahedral borate bending modes. The molecular structure of a natural chambersite has been assessed using vibrational spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the mineral olmiite CaMn\[SiO3(OH)](OH) which forms a series with its calcium analogue poldevaartite CaCa\[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis , Raman and infrared spectroscopy. Chemical analysis shows the mineral is pure and contains only calcium and manganese in the formula. Thermogravimetric analysis proves the mineral decomposes at 502°C with a mass loss of 8.8% compared with the theoretical mass loss of 8.737%. A strong Raman band at 853 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations.Two intense Raman bands observed at 3511 and 3550 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of olmiite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a combination of scanning electron microscopy with EDX and vibrational spectroscopy to study the mineral ardennite-(As). The mineral ardennite-(As) of accepted formula Mn2þ 4 (Al,Mg)6(Si3O10)(SiO4)2(AsO4,VO4)(OH)6 is a silicate mineral which may contain arsenate and/or vanadates anions. Because of the oxyanions present, the mineral lends itself to analysis by Raman and infrared spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by Si, Mn, Al and As. Ca and V were also observed in partial substitution for Mn and As. Raman bands at 1197, 1225, 1287 and 1394 cm-1 are assigned to SiO stretching vibrations. The strong Raman bands at 779 and 877 cm-1 are assigned to the AsO3- 4 antisymmetric and symmetric stretching vibrations. The Raman band at 352 cm-1 is assigned to the m2 symmetric bending vibration. The series of Raman bands between 414 and 471 cm-1 are assigned to the m4 out of plane bending modes of the AsO3-4 units. Intense Raman bands observed at 301 and 314 cm-1 are attributed to the MnO stretching and bending vibrations. Raman bands at 3041, 3149, 3211 and 3298 cm-1 are attributed to the stretching vibrations of OH units. There is vibrational spectroscopic evidence for the presence of water adsorbed on the ardennite-(As) surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the mineral hydroboracite CaMg[B3O4(OH)3]2∙3H2O using electron microscopy and vibrational spectroscopy. Both tetrahedral and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm-1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1039 cm-1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm-1 are attributed to the BOH in-plane bending modes. Raman bands at 825 and 925 cm-1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The sharp Raman peak at 925 cm-1 is from the 11-B component such a mode, then it should have a smaller 10-B satellite near (1.03)x(925) = 952 cm-1, and indeed a small peak at 955 is observed. Four sharp Raman bands observed at 3371, 3507, 3563 and 3632 cm-1 are attributed to the stretching vibrations of hydroxyl units. The broad Raman bands at 3076, 3138, 3255, 3384 and 3551 cm-1 are assigned to water stretching vibrations. Infrared bands at 3367, 3505, 3559 and 3631 cm-1are assigned to the stretching vibration of the hydroxyl units. Broad infrared bands at 3072 and 3254 cm-1 are assigned to water stretching vibrations. Infrared bands at 1318, 1349, 1371, 1383 cm-1 are assigned to the antisymmetric stretching vibrations of trigonal boron

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tunellite is a strontium borate mineral with formula: SrB6O9(OH)2∙3(H2O) and occurs as colorless crystals in the monoclinic pyramidal crystal system. An intense Raman band at 994 cm-1 was assigned to the BO stretching vibration of the B2O3 units. Raman bands at 1043, 1063, 1082 and 1113 cm-1 are attributed to the in-plane bending vibrations of trigonal boron. Sharp Raman bands observed at 464, 480, 523, 568 and 639 cm-1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3567 and 3614 cm-1, attributed to OH units. The molecular structure of a natural tunellite has been assessed by using vibrational spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral glauberite is one of many minerals formed in evaporite deposits. The mineral glauberite has been studied using a combination of scanning electron microscopy with energy dispersive X-ray analysis and infrared and Raman spectroscopy. Qualitative chemical analysis shows a homogeneous phase, composed by sulphur, calcium and sodium. Glauberite is characterized by a very intense Raman band at 1002 cm-1 with Raman bands observed at 1107, 1141, 1156 and 1169 cm-1 attributed to the sulphate ν3 antisymmetric stretching vibration. Raman bands at 619, 636, 645 and 651 cm-1 are assigned to the ν4 sulphate bending modes. Raman bands at 454, 472 and 486 cm-1 are ascribed to the ν2 sulphate bending modes. The observation of multiple bands is attributed to the loss of symmetry of the sulphate anion. Raman spectroscopy is superior to infrared spectroscopy for the determination of glauberite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filopodial protrusion initiates cell migration, which decides the fate of cells in biological environments. In order to understand the structural stability of ultra-slender filopodial protrusion, we have developed an explicit modeling strategy that can study both static and dynamic characteristics of microfilament bundles. Our study reveals that the stability of filopodial protrusions is dependent on the density of F-actin crosslinkers. This cross-linkage strategy is a requirement for the optimization of cell structures, resulting in the provision and maintenance of adequate bending stiffness and buckling resistance while mediating the vibration. This cross-linkage strategy explains the mechanical stability of filopodial protrusion and helps understand the mechanisms of mechanically induced cellular activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural Dynamics is the study of the response of structures to dynamic or time varying loads. This topic has emerged to be one of importance to all structural engineers due to three important issues with structural engineering in the new millennium. These are: (1) vibration and problems in slender structures that have emerged due to new material technology and aesthetic requirements, (ii) ageing structures such as bridges whoese health needs to be monitored and appropriate retrofitting carried out to prevent failure and (iii) increased vulnerability of structures to random loads such as seismic, impact and blast loads. Knowledge of structural dynamics is necessary to address these issues and their consequences. During the past two decades, research in structural dynamics has generated considerable amount of new information to address these issues. This new knowledge is not readily made available to practicing engineers and very little or none of it enters the classrooms. There is no universal emphasis on including structural dynamics and their recently generated new knowledge into the civil/structural curriculum. This paper argues for the need to include structural dynamics into the syllabus of all civil engineering courses especially those having a first or second major in structural engineering. This will enable our future structural engineers to design and maintain safe and efficient structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene-based resonators are envisioned to build the ultimate limit of two-dimensional nanoelectromechanical system due to their ultrasensitive detection of mass, force, pressure and charge. However, such application has been greatly impeded by their extremely low quality factor. In the present work, we explore, using the large-scale molecular dynamics simulation, the possibility of tailoring the resonance properties of a bilayer graphene sheet (GS) with interlayer sp3 bonds. For the bilayer GS resonator with interlayer sp3 bonds, we discovered that the sp3 bonds can either degrade or enhance the resonance properties of the resonator depending on their density and location. It is found that the distribution of sp3 bonds only along the edges of either pristine or hydrogenated bilayer GS, leads to a greatly enhanced quality factor. A quality factor of ~1.18×105 is observed for a 3.07×15.31 nm2 bilayer GS resonator with sp3 bonds, which is more than 30 times larger comparing with that of a pristine bilayer GS. The present study demonstrates that the resonance properties of a bilayer GS resonator can be tuned by introducing sp3 bonds. This finding provides a useful guideline for the synthesis of the bilayer GS for its application as a resonator component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An on-road study was conducted to evaluate a complementary tactile navigation signal on driving behaviour and eye movements for drivers with hearing loss (HL) compared to drivers with normal hearing (NH). 32 participants (16 HL and 16 NH) performed two preprogrammed navigation tasks. In one, participants received only visual information, while the other also included a vibration in the seat to guide them in the correct direction. SMI glasses were used for eye tracking, recording the point of gaze within the scene. Analysis was performed on predefined regions. A questionnaire examined participant's experience of the navigation systems. Hearing loss was associated with lower speed, higher satisfaction with the tactile signal and more glances in the rear view mirror. Additionally, tactile support led to less time spent viewing the navigation display.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.