965 resultados para Used, Oil, Sludge, Engine, Volatile


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for solutions to minimize the negative environmental impacts of anthropogenic activities Fhas increased. Sewage sludge is composed of predominantly organic matter and can be used to improve soil characteristics, such as fertility. Therefore, its application in agriculture is an adequate alternative for its final disposal. However, there is a lack of information on its long-term effects on soil changes in tropical areas. Thus, the objectives of this study were to determine (i) the effect of sewage sludge application on heavy metal build-up in soil and maize grains and leaves, and (ii) the effects of soil amendment with sewage sludge on the chemical properties of a Brazilian oxisol. Besides the increasing levels of Zn, Cu, Ni, and Cr, amending soil with sewage sludge also alters the distribution of these metals by increasing the mobile Phases, which correlated significantly with the increase in metal extraction with two single extractants, Mehlich 1 and DTPA (Diethylene triamine pentaacetic acid). The levels of Fe, Mn, Zn, and Cu in maize grains and leaves increased with the type and rate of sewage sludge application. Nevertheless, metal build-up in soil and plants was within the allowed limits. Significant differences were also found in soil characteristics like humic fractionation with the applied sewage doses. The data obtained does not indicate any expressive drawbacks in the use of sewage sludge as a soil amendment, as the heavy metal concentrations observed are unlikely to cause any environmental or health problems, even overestimated loadings, and are in accordance with the Brazilian regulations on farming land biosolid disposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the cytotoxic activity of chloroform and water root extracts of Albertisia papuana Becc. on T47D cell line and identify the volatile compounds of the extracts. Methods: The plant roots were extracted with chloroform and water using maceration and boiling methods, respectively. The cytotoxicity of the extracts on T47D were determined using 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Doxorubicin was used as reference drug in the cytotoxicity test while Probit analysis was used to calculate the Median Growth Inhibitory Concentration IC50 of the extracts. The volatile compounds in the chloroform and water root extracts were analyzed using Gas Chromatography-Mass Spectrophotometry GC-MS. Results: The IC50 of the chloroform and water extracts were 28.0 ± 6.0 and 88.0 ± 5.5 μg/mL, respectively whereas that of doxorubicin was 8.5 ± 0.1 μg/mL. GC-MS results showed that there were 46 compounds in the chloroform extract, out of which the five major components are ethyl linoleate (49.68 %), bicyclo (3.3.1) non-2-ene (29.29 %), ethyl palmitate (5.06 %), palmitic acid (3.67 %) and ethyl heptadecanoate (1.57 %).The water extract consisted of three compounds, butanoic acid (15.58 %); methyl cycloheptane (3.45 %), and methyl 2-O-methylpentofuranoside (80.96 %). Conclusion: The chloroform root extract of A. papuana Becc. had a fairly potent anticancer activity against breast cancer cells and may be further developed as an anticancer agent. Its major components were fatty acids and fatty acid esters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the antimicrobial and anti-biofilm activities of essential oil from Mentha pulegium L. (EOMP) on multi-drug resistant (MDR) isolates of A. baumannii , as well as its phytochemical composition, antioxidant properties and cytotoxic activity. Methods: The phytochemical composition of EOMP was analyzed by gas chromatography, while its antimicrobial activities were determined by disc diffusion and broth micro-dilution methods. Minimal biofilm inhibition concentration (MBIC) and minimal biofilm eradication concentration (MBEC) tests were used for assessment of its anti-biofilm properties. Viability in the biofilm was studied using 2,3-bis (2- methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay, while colorimetric assay was used to assess its cytotoxicity on L929 cells. Results: D-isomenthone, pulegone, isopulegone, menthol and piperitenone were the major components of the plant extract. EOMP produced > 22 mm inhibition zone for the isolates, with minimum inhibitory concentration (MIC) and MBIC of 0.6 - 2.5 and 0.6 - 1.25 μL/mL, respectively, while MBEC was ≥ 10 μL/msL. EOMP damaged biofilm structures formed by A. baumannii strains at MIC by 26 – 91 %. Conclusion: These results suggest that EOMP contains agents that may be useful in the development of new drugs against A. baumannii infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing world demand for energy supplied by fossil fuels, a major contributor to the emission of pollutants into the atmosphere and causing environmental problems, has been encouraging governments and international organizations to reflect and encourage the use of alternative renewable sources. Among these new possibilities deserves attention biodiesel, fuel cleaner and easy to reproduce. The study of new technologies involving that source is necessary. From this context, the paper aims at analyzing the thermal stability by thermogravimetric analysis, of the waste generated from atmospheric distillation of mixtures with ratios of 5, 10, 15 and 20% palm biodiesel in diesel with and without addition of BHT antioxidant. It was synthesized biodiesel through palm oil, via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the diesel common indoor type (S1800) from a gas station BR. The diesel was already added with 5% biodiesel, and thus the proportions used for these blends were subtracted from the existing ratio in diesel fuel, resulting in the following proportions palm oil biodiesel: 0% (B5), 5% (B10), 10 % (B15) and 15% (B20). From atmospheric distillation analysis, performed in mixtures with and without BHT were collected residue generated by each sample and performed a thermal study from the thermogravimetric analysis at a heating rate of 10 °C.min-1, nitrogen atmosphere and heating to 600 ° C. According to the specifications of Resolution No. 7/2008 for biodiesel, it was found that the material was synthesized in accordance with the specifications. For mixtures, it was noted that the samples were in accordance with the ANP Resolution No. 42/2009. Given the TG / DTG curves of the samples of waste mixtures with and without BHT antioxidant was able to observe that they showed a single stage of thermal decomposition attributed to decomposition of heavy hydrocarbons and esters and other heavier constituents of the waste sample weighed. The thermal behavior of residues from atmospheric distillation of mixtures of diesel / biodiesel is very important to understand how this affects the proper functioning of the engine. A large amount of waste can generate a high content of particulate material, coke formation and carbonaceous deposits in engine valves, compromising their performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the artificial lift method by Electrical Submersible Pump (ESP), the energy is transmitted for the well´s deep through a flat electric handle, where it is converted into mechanical energy through an engine of sub-surface, which is connected to a centrifugal pump. This transmits energy to the fluid under the pressure form, bringing it to the surface In this method the subsurface equipment is basically divided into: pump, seal and motor. The main function of the seal is the protect the motor, avoiding the motor´s oil be contaminated by oil production and the consequent burning of it. Over time, the seal will be wearing and initiates a contamination of motor oil, causing it to lose its insulating characteristics. This work presents a design of a magnetic sensor capable of detecting contamination of insulating oil used in the artificial lift method of oil-type Electrical Submersible Pump (ESP). The objective of this sensor is to generate alarm signal just the moment when the contamination in the isolated oil is present, enabling the implementation of a predictive maintenance. The prototype was designed to work in harsh conditions to reach a depth of 2000m and temperatures up to 150°C. It was used a simulator software to defined the mechanical and electromagnetic variables. Results of field experiments were performed to validate the prototype. The final results performed in an ESP system with a 62HP motor showed a good reliability and fast response of the prototype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oily sludge is a complex mix of hydrocarbons, organic impurities, inorganic and water. One of the major problems currently found in petroleum industry is management (packaging, storage, transport and fate) of waste. The nanomaterials (catalysts) mesoporous and microporous are considered promising for refining and adsorbents process for environment protection. The aim of this work was to study the oily sludge from primary processing (raw and treated) and vacuum residue, with application of thermal analyses technique (pyrolysis), thermal and catalytic pyrolysis with nanomaterials, aiming at production petroleum derived. The sludge and vacuum residue were analyzed using a soxhlet extraction system, elemental analysis, thin layer chromatography, thermogravimetry and pyrolysis coupled in gas chromatography/mass spectrometry (Py GC MS). The catalysts AlMCM-41, AlSBA-15.1 e AlSBA-15.2 were synthesized with molar ratio silicon aluminum of 50 (Si/Al = 50), using tetraethylorthosilicante as source of silicon and pseudobuhemita (AlOOH) as source of aluminum. The analyzes of the catalysts indicate that materials showed hexagonal structure and surface area (783,6 m2/g for AlMCM-41, 600 m2/g for AlSBA-15.1, 377 m2/g for AlSBA-15.2). The extracted oily sludge showed a range 65 to 95% for organic components (oil), 5 to 35% for inorganic components (salts and oxides) and compositions different of derivatives. The AlSBA-15 catalysts showed better performance in analyzes for production petroleum derived, 20% increase in production of kerosene and light gas oil. The energy potential of sludge was high and it can be used as fuel in other cargo processed in refinery

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of superhydrophobic and superoleophilic microwrinkled reduced graphene oxide (MWrGO) structures is here demonstrated for oil spill cleanup. The impact of the thickness of MWrGO films on the sorption performance of three different oils was investigated. Water contact angles across the MWrGO surfaces were found to exceed 150°, while oil could be easily absorbed by the microwrinkled structures of MWrGO within seconds after contact. Although the oil surface diffusion rate was not found to be dependent on the thickness of the graphene oxide films, the oil sorption capacity was the largest with the thinner MWrGO films due to the high surface area resulting from their fine surface texture. Furthermore, the composite films can be repeatedly used for at least 20 oil sorption-removal cycles without any notable loss in selectivity and uptake capacity. These MWrGO/elastomer composite films could be applied as a potential candidate material for future oil spill cleanup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petroleum process industries are one of the most energy and emission intensive sectors throughout the world.There are natural gas processing plant, crude oils and condensate fractionation plant, liquefied natural gas plantand liquefied petroleum gas plant etc. creates environmental pollution by processing and handling of petroleumproducts. The study critically reviewed and discussed the energy and environmental management includingpollution control of petroleum process industries of Bangladesh. They produce both gaseous (process gas, wastegas etc.) and liquid (produced water, waste oil and grease etc.) pollutants. The study found that the liquid pollutantlike waste water is more hazardous and its treatment process is highly complicated due to its higher salinity, morecorrosivity and grease contain characteristics. As part of energy management, the rational use of energy and energyflow diagram of the petroleum industry is presented. Finally, a time frame measures which can be implemented inorder to save energy is outlined. The study concluded that the rational use of energy and proper environmentalmanagement are essential for achieving energy and environmental sustainability of process industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accidental spills and subsequent fires during oil storage and transportation periods cause serious damage to environments. Herein, we present a novel route to enhance oil safety by transforming oils into high internal phase emulsion (HIPE) hydrogels. These HIPE hydrogels are stabilized by solvent- or pH-driven assembled block copolymer (BCP), namely poly(4-vinylpyridine)-block-poly(ethylene glycol)-block-poly(4-vinylpyridine) (4VPm-EGn-4VPm). The assembled BCP shows high efficiency to stabilize HIPE hydrogels with a low concentration of 1.0 (w/v) % relative to the continuous aqueous phase. The volume fraction of the dispersed organic phase can be as high as 89% with a variety of oils, including toluene, xylene, blended vegetable oil, canola oil, gasoline, diesel, and engine oil. These smelly and flammable liquids were formed into HIPE hydrogels and thus their safety was enhanced. As the assembly is pH sensitive, oils trapped in the HIPE hydrogels can be released by simply tuning pH values of the continuous aqueous phase. The aqueous phase containing BCP can be reused to stabilize HIPE hydrogels after naturalization. These assembled BCP stabilized HIPE hydrogels offer a novel and safe approach to preserve and transport these smelly and flammable liquid oils, avoiding environmental damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study used microchannel emulsification (MCE) to encapsulate quercetin in food grade oil-in-water (O/W) emulsions. A silicon microchannel plate (Model WMS 1-2) comprised of 10,300 discrete 10 × 104 μm microslots was connected to a circular microhole with an inner diameter of 10 μm. 1% (w/w) Tween 20 was used as optimized emulsifier in Milli-Q water, while 0.4 mg ml-1 quercetin in different oils served as a dispersed phase. The MCE was carried by injecting the dispersed phase at 2 ml h-1. Successful emulsification was conducted below the critical dispersed phase flux, with a Sauter mean diameter of 29 μm and relative span factor below 0.25. The O/W emulsions remained stable in terms of droplet coalescence at 4 and 25 °C for 30 days. The encapsulation efficiency of quercetin in the O/W emulsions was 80% at 4 °C and 70% at 25 °C during the evaluated storage period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutritional deficiencies of ergocalciferol (VD2) and cholecalciferol (VD3) cause skeletal deformations. The primary aim of this study was to encapsulate VD2 and VD3 in food-grade oil-in-water (O/W) emulsions by using microchannel emulsification (MCE). Silicon asymmetric straight-through microchannel (MC) array consisting of 10 313 channels, each having an 11 × 104 μm microslot connected to a 10 μm circular microholes. 1% (w/w) sodium cholate or Tween 20 in water was used as the continuous phase, while 0.5% (w/w) of each VD2 and VD3 in different oils served as the dispersed phase. Monodisperse O/W emulsions with Sauter mean diameters of 28 to 32 μm and relative span factor widths below 0.3 were formulated via an asymmetric straight-through MC array under appropriate operating conditions. The monodisperse O/W emulsions stabilised with Tween 20 remained stable for >30 days with encapsulation efficiencies (EEs) of VD2 and VD3 of above 70% at 4 and 25 °C. In contrast, those stabilised with sodium cholate had stability of >30 days with their EEs of over 70% only at 25 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The legume Arachis hypogaea, commonly known as peanut or groundnut, is a very important food crop throughout the tropics and subtropics. Peanut is one of the most widely used legumes due to its nutrition and taste, and it occupies a rank of major oilseed crop in the world. It has been recognized as a functional food due to its role in a health promoting effect. Peanut oil contains a well-balanced fatty acid and antioxidant profile that provide protection against harmful substances especially free radicals. This paper gives an overview of scientific literature available on phytochemical and functional properties of peanut oil. Owing to its unique organoleptic properties associated with its cardioprotective and anti-inflammatory properties, peanut oil has found, recently, its place on the highly competitive international edible oil market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The argan tree (Argania spinosa L. Skeels), an endemic tree in Morocco, is the most remarkable species in North Africa, due to its botanical and bioecologic interest as well as its social value. Argan oil is traditionally well known for its cardioprotective properties and it is also used in the treatment of skin infections. This paper gives an overview of scientific literature available on nutritional and pharmacologic properties of argan oil. Owing to its unique organoleptic properties associated with its cardioprotective properties, argan oil has found, recently, its place in the highly competitive international edible oil market. This success is a very positive sign for the preservation of the argan tree, the argan forests and, therefore, in general, the biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of the emulsifying conditions and emulsifier type on production of water-in-oil (W/O) emulsions encapsulating ascorbic acid derivatives by microchannel (MC) emulsification. The ascorbic acid derivatives added in a dispersed aqueous phase are calcium ascorbate (AA-Ca) and ascorbic acid 2-glucoside (AA-2G). The continuous phase used was decane, soybean oil or their mixture, containing 5% (w/w) tetraglycerin monolaurate condensed ricinoleic acid ester or sorbitan trioleate. A hydrophobized silicon MC array plate (model: MS407) with a channel depth of 7μm was used for MC emulsification. The use of MC emulsification enabled successful encapsulation of AA-Ca and AA-2G in monodisperse W/O emulsion droplets with coefficients of variation (CV) less than 7%. Their average droplet diameter (dav) increased with increasing the continuous-phase viscosity that is similar or higher than the dispersed-phase viscosity. The dav and CV of the resultant monodisperse W/O emulsions were unaffected by the dispersed-phase flow rate below critical values of 1.2-1.6mLh-1 when using decane as the continuous-phase medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines the relationship between oil prices and economic activity, and it attempts to address the question: do increases in oil prices (oil shocks) precede U.S. recessions? This paper also applied macroeconomics, either through the direct use of a macroeconomic point of view or using a combination of mathematical and statistical models. Two mathematical and statistical models are used to determine the ability of oil prices to predict recessions in the United States. First, using the binary cyclical (Bry-Boschan method) indicator procedure to test the turning point of oil prices compared with turning points in GDP finds that oil prices almost always turn five month before a recession, suggesting that an oil shock might occur before a recession. Second, the Granger causality test shows that oil prices change do Granger cause U.S. recessions, indicating that oil prices are a useful signal to indicate a U.S. recession. Finally, combining this analysis with the literature, there are several potential explanations that the spike in oil prices result in slower GDP growth and are a contributing factor to U.S. recessions.