986 resultados para Ubiquitous technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forging links between education and industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Alliance for Coastal Technologies (ACT) workshop was convened to assess the availability and state of development of conductivity-temperature sensors that can meet the needs of coastal monitoring and management communities. Rased on the discussion, there are presently a number of commercial sensor options available, with a wide range of package configurations suitable for deployment in a range of coastal environments. However, some of the central questions posed in the workshop planning documents were left somewhat unresolved. The workshop description emphasized coastal management requirements and, in particular, whether less expensive, easily deployed, lower-resolution instruments might serve many management needs. While several participants expressed interest in this class of conductivity-temperature sensors, based on input from the manufacturers, it is not clear that simply relaxing the present level of resolution of existing instruments will result in instruments of significantly lower unit cost. Conductivity-temperature sensors are available near or under the $1,000 unit cost that was operationally defined at the workshop as a breakpoint for what might be considered to be a "low cost" sensor. For the manufacturers, a key consideration before undertaking the effort to develop lower cost sensors is whether there will be a significant market. In terms of defining "low cost," it was also emphasized that the "life cycle costs" for a given instrument must be considered (e.g., including personnel costs for deployment and maintenance). An adequate market survey to demonstrate likely applications and a viable market for lower cost sensors is needed. Another topic for the workshop was the introduction to the proposed ACT verification for conductivity-temperature sensors. Following a summary of the process as envisioned by ACT, initial feedback was solicited. Protocol development will be pursued further in a workshop involving ACT personnel and conductivity-temperature sensor manufacturers.[PDF contains 28 pages]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alliance for Coastal Technologies (ACT) held a Workshop on Sensor Technology for Assessing Groundwater-Surface Water Interactions in the Coastal Zone on March 7 to 9,2005 in Savannah, GA. The main goal of the workshop was to summarize the general parameters, which have been found to be useful in assessing groundwater-surface water (GW-SW) interactions in the coastal zone. The workshop participants (Appendix I) were specifically charged with identifying the types of sensor systems, if any, that have been used to obtain time-series data and to make known which parameters may be the most amenable to the development/application of sensor technology. The group consisted of researchers, industry representatives, and environmental managers. Four general recommendations were made: 1. Educate coastal managers and agencies on the importance of GW-SW interactions, keeping in mind that regulatory agencies are driven by a different set of rules than researchers: the focus is on understanding the significance of the problem and providing solutions. ACT could facilitate this process in two ways. First, given that the research literature on this subject is fairly diffuse, ACT could provide links from its web site to fact sheets or other literature. Second, ACT could organize a focused meeting for managers and/or agency groups. Encourage development of primary tools for quantifying flow. The most promising technology in this respect is flow meters designed for flux chambers, mainly because they should be simple to use and can be made relatively inexpensively. However, it should be kept in mind that they provide only point measurements and several would need to be deployed as a network in order to obtain reliable flow estimates. For evaluating system wide GW-SW interactions, tools that integrate the signal over large areas would be required. Suggestions include a user-friendly hydrogeologic models, keeping in mind that freshwater flow is not the entire story, or continuous radon monitors. Though the latter would be slightly more difficult to use in terms of background knowledge, such an instrument would be low power and easy to operate and maintain. ACT could facilitate this recommendation by identifying funding opportunities on its web site and/or performing evaluations of existing technologies that could be summarized on the web site. (pdf contains 18 pages)