994 resultados para UNIX (Computer file)
Resumo:
Emerging configurable infrastructures such as large-scale overlays and grids, distributed testbeds, and sensor networks comprise diverse sets of available computing resources (e.g., CPU and OS capabilities and memory constraints) and network conditions (e.g., link delay, bandwidth, loss rate, and jitter) whose characteristics are both complex and time-varying. At the same time, distributed applications to be deployed on these infrastructures exhibit increasingly complex constraints and requirements on resources they wish to utilize. Examples include selecting nodes and links to schedule an overlay multicast file transfer across the Grid, or embedding a network experiment with specific resource constraints in a distributed testbed such as PlanetLab. Thus, a common problem facing the efficient deployment of distributed applications on these infrastructures is that of "mapping" application-level requirements onto the network in such a manner that the requirements of the application are realized, assuming that the underlying characteristics of the network are known. We refer to this problem as the network embedding problem. In this paper, we propose a new approach to tackle this combinatorially-hard problem. Thanks to a number of heuristics, our approach greatly improves performance and scalability over previously existing techniques. It does so by pruning large portions of the search space without overlooking any valid embedding. We present a construction that allows a compact representation of candidate embeddings, which is maintained by carefully controlling the order via which candidate mappings are inserted and invalid mappings are removed. We present an implementation of our proposed technique, which we call NETEMBED – a service that identify feasible mappings of a virtual network configuration (the query network) to an existing real infrastructure or testbed (the hosting network). We present results of extensive performance evaluation experiments of NETEMBED using several combinations of real and synthetic network topologies. Our results show that our NETEMBED service is quite effective in identifying one (or all) possible embeddings for quite sizable queries and hosting networks – much larger than what any of the existing techniques or services are able to handle.
Resumo:
Buried heat sources can be investigated by examining thermal infrared images and comparing these with the results of theoretical models which predict the thermal anomaly a given heat source may generate. Key factors influencing surface temperature include the geometry and temperature of the heat source, the surface meteorological environment, and the thermal conductivity and anisotropy of the rock. In general, a geothermal heat flux of greater than 2% of solar insolation is required to produce a detectable thermal anomaly in a thermal infrared image. A heat source of, for example, 2-300K greater than the average surface temperature must be a t depth shallower than 50m for the detection of the anomaly in a thermal infrared image, for typical terrestrial conditions. Atmospheric factors are of critical importance. While the mean atmospheric temperature has little significance, the convection is a dominant factor, and can act to swamp the thermal signature entirely. Given a steady state heat source that produces a detectable thermal anomaly, it is possible to loosely constrain the physical properties of the heat source and surrounding rock, using the surface thermal anomaly as a basis. The success of this technique is highly dependent on the degree to which the physical properties of the host rock are known. Important parameters include the surface thermal properties and thermal conductivity of the rock. Modelling of transient thermal situations was carried out, to assess the effect of time dependant thermal fluxes. One-dimensional finite element models can be readily and accurately applied to the investigation of diurnal heat flow, as with thermal inertia models. Diurnal thermal models of environments on Earth, the Moon and Mars were carried out using finite elements and found to be consistent with published measurements. The heat flow from an injection of hot lava into a near surface lava tube was considered. While this approach was useful for study, and long term monitoring in inhospitable areas, it was found to have little hazard warning utility, as the time taken for the thermal energy to propagate to the surface in dry rock (several months) in very long. The resolution of the thermal infrared imaging system is an important factor. Presently available satellite based systems such as Landsat (resolution of 120m) are inadequate for detailed study of geothermal anomalies. Airborne systems, such as TIMS (variable resolution of 3-6m) are much more useful for discriminating small buried heat sources. Planned improvements in the resolution of satellite based systems will broaden the potential for application of the techniques developed in this thesis. It is important to note, however, that adequate spatial resolution is a necessary but not sufficient condition for successful application of these techniques.
Resumo:
A computer model has been developed to optimize the performance of a 50kWp photovoltaic system which supplies electrical energy to a dairy farm at Fota Island in Cork Harbour. Optimization of the system involves maximising the efficiency and increasing the performance and reliability of each hardware unit. The model accepts horizontal insolation, ambient temperature, wind speed, wind direction and load demand as inputs. An optimization program uses the computer model to simulate the optimum operating conditions. From this analysis, criteria are established which are used to improve the photovoltaic system operation. This thesis describes the model concepts, the model implementation and the model verification procedures used during development. It also describes the techniques which are used during system optimization. The software, which is written in FORTRAN, is structured in modular units to provide logical and efficient programming. These modular units may also be used in the modelling and optimization of other photovoltaic systems.
Resumo:
The topic of this thesis is impulsivity. The meaning and measurement of impulse control is explored, with a particular focus on forensic settings. Impulsivity is central to many areas of psychology; it is one of the most common diagnostic criteria of mental disorders and is fundamental to the understanding of forensic personalities. Despite this widespread importance there is little agreement as to the definition or structure of impulsivity, and its measurement is fraught with difficulty owing to a reliance on self-report methods. This research aims to address this problem by investigating the viability of using simple computerised cognitive performance tasks as complementary components of a multi-method assessment strategy for impulse control. Ultimately, the usefulness of this measurement strategy for a forensic sample is assessed. Impulsivity is found to be a multifaceted construct comprised of a constellation of distinct sub-dimensions. Computerised cognitive performance tasks are valid and reliable measures that can assess impulsivity at a neuronal level. Self-report and performance task methods assess distinct components of impulse control and, for the optimal assessment of impulse control, a multi-method battery of self-report and performance task measures is advocated. Such a battery is shown to have demonstrated utility in a forensic sample, and recommendations for forensic assessment in the Irish context are discussed.
Resumo:
This paper describes implementations of two mobile cloud applications, file synchronisation and intensive data processing, using the Context Aware Mobile Cloud Services middleware, and the Cloud Personal Assistant. Both are part of the same mobile cloud project, actively developed and currently at the second version. We describe recent changes to the middleware, along with our experimental results of the two application models. We discuss challenges faced during the development of the middleware and their implications. The paper includes performance analysis of the CPA support for the two applications in respect to existing solutions.
Resumo:
The retrofitting of existing buildings for decreased energy usage, through increased energy efficiency and for minimum carbon dioxide emissions throughout their remaining lifetime is a major area of research. This research area requires development to provide building professionals with more efficient building retrofit solution determination tools. The overarching objective of this research is to develop a tool for this purpose through the implementation of a prescribed methodology. This has been achieved in three distinct steps. Firstly, the concept of using the degree-days modelling method as an adequate means of basing retrofit decision upon was analysed and the results illustrated that the concept had merit. Secondly, the concept of combining the degree-days modelling method and the Genetic Algorithms optimisation method is investigated as a method of determining optimal thermal energy retrofit solutions. Thirdly, the combination of the degree-days modelling method and the Genetic Algorithms optimisation method were packaged into a building retrofit decision-support tool and named BRaSS (Building Retrofit Support Software). The results demonstrate clearly that, fundamental building information, simplified occupancy profiles and weather data used in a static simulation modelling method is a sufficient and adequate means to base retrofitting decisions upon. The results also show that basing retrofit decisions upon energy analysis results are the best means to guide a retrofit project and also to achieve results which are optimum for a particular building. The results also indicate that the building retrofit decision-support tool, BRaSS, is an effective method to determine optimum thermal energy retrofit solutions.
Resumo:
The influence of communication technology on group decision-making has been examined in many studies. But the findings are inconsistent. Some studies showed a positive effect on decision quality, other studies have shown that communication technology makes the decision even worse. One possible explanation for these different findings could be the use of different Group Decision Support Systems (GDSS) in these studies, with some GDSS better fitting to the given task than others and with different sets of functions. This paper outlines an approach with an information system solely designed to examine the effect of (1) anonymity, (2) voting and (3) blind picking on decision quality, discussion quality and perceived quality of information.
Resumo:
The increasing need for cross sections far from the valley of stability, especially for applications such as nuclear astrophysics, poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematic relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by an effective nucleon-nucleon interaction. All these microscopic ingredients have been included in the latest version of the TALYS nuclear reaction code (http://www.talys.eu/).
Resumo:
Gemstone Team ILL (Interactive Language Learning)
Resumo:
Gemstone Team MICE (Modifying and Improving Computer Ergonomics)
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated that promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests behavioral markers can be observed late in the first year of life. Many of these studies involved extensive frame-by-frame video observation and analysis of a child's natural behavior. Although non-intrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are impractical for clinical and large population research purposes. Diagnostic measures for ASD are available for infants but are only accurate when used by specialists experienced in early diagnosis. This work is a first milestone in a long-term multidisciplinary project that aims at helping clinicians and general practitioners accomplish this early detection/measurement task automatically. We focus on providing computer vision tools to measure and identify ASD behavioral markers based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure three critical AOSI activities that assess visual attention. We augment these AOSI activities with an additional test that analyzes asymmetrical patterns in unsupported gait. The first set of algorithms involves assessing head motion by tracking facial features, while the gait analysis relies on joint foreground segmentation and 2D body pose estimation in video. We show results that provide insightful knowledge to augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
Gemstone Team FACE
Resumo:
Gemstone Team FLIP (File Lending in Proximity)
Resumo:
We examined the coherence of trauma memories in a trauma-exposed community sample of 30 adults with and 30 without posttraumatic stress disorder. The groups had similar categories of traumas and were matched on multiple factors that could affect the coherence of memories. We compared the transcribed oral trauma memories of participants with their most important and most positive memories. A comprehensive set of 28 measures of coherence including 3 ratings by the participants, 7 ratings by outside raters, and 18 computer-scored measures, provided a variety of approaches to defining and measuring coherence. A multivariate analysis of variance indicated differences in coherence among the trauma, important, and positive memories, but not between the diagnostic groups or their interaction with these memory types. Most differences were small in magnitude; in some cases, the trauma memories were more, rather than less, coherent than the control memories. Where differences existed, the results agreed with the existing literature, suggesting that factors other than the incoherence of trauma memories are most likely to be central to the maintenance of posttraumatic stress disorder and thus its treatment.