973 resultados para ULTRAVIOLET-ABSORPTION SPECTRA
Resumo:
Semiconductor photocatalysis has received much attention during last three decades as a promising solution for both energy generation and environmental problems. Heterogeneous photocatalytic oxidation allows the degradation of organic compounds into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. The •OH radicals formed during the photocatalytic processes are powerful oxidizing agents and can mineralise a number of organic contaminants. Titanium dioxide (TiO2), due to its chemical stability, non-toxicity and low cost represents one of the most efficient photocatalyst. However, only the ultraviolet fraction of the solar radiation is active in the photoexcitation processes using pure TiO2 and although, TiO2 can treat a wide range of organic pollutants the effectiveness of the process for pollution abatement is still low. A more effective and efficient catalyst therefore must be formulated. Doping of TiO2 was considered with the aim of improving photocatalytic properties. In this study TiO2 catalyst was prepared using the sol-gel method. Metal and nonmetal doped TiO2 catalysts were prepared. The photoactivity of the catalyst was evaluated by the photodegradation of different dyes and pesticides in aqueous solution. High photocatalytic degradation of all the pollutants was observed with doped TiO2. Structural and optical properties of the catalysts were characterized using XRD, BET surface area, UV-Vis. DRS, CHNS analysis, SEM, EDX, TEM, XPS, FTIR and TG. All the catalysts showed the anatase phase. The presence of dopants shifts the absorption of TiO2 into the visible region indicating the possibility of using visible light for photocatalytic processes.
Resumo:
We have investigated the mechanisms leading to two and three body photon absorption in nuclei. At photon energies around the pion production threshold we obtain a fraction of three body absorption of less than 10% of the total, contradicting previous theoretical claims that it dominates the absorption process. The strength of the three body channel grows smoothly with the photon energy reaching a maximum of about 60% of the total direct absorption at energies of the photon around 400 MeV.
Resumo:
Comets are the spectacular objects in the night sky since the dawn of mankind. Due to their giant apparitions and enigmatic behavior, followed by coincidental calamities, they were termed as notorious and called as `bad omens'. With a systematic study of these objects modern scienti c community understood that these objects are part of our solar system. Comets are believed to be remnant bodies of at the end of evolution of solar system and possess the material of solar nebula. Hence, these are considered as most pristine objects which can provide the information about the conditions of solar nebula. These are small bodies of our solar system, with a typical size of about a kilometer to a few tens of kilometers orbiting the Sun in highly elliptical orbits. The solid body of a comet is nucleus which is a conglomerated mixture of water ice, dust and some other gases. When the cometary nucleus advances towards the Sun in its orbit the ices sublimates and produces the gaseous envelope around the nucleus which is called coma. The gravity of cometary nucleus is very small and hence can not in uence the motion of gases in the cometary coma. Though the cometary nucleus is a few kilometers in size they can produce a transient, extensive, and expanding atmosphere with size several orders of magnitude larger in space. By ejecting gas and dust into space comets became the most active members of the solar system. The solar radiation and the solar wind in uences the motion of dust and ions and produces dust and ion tails, respectively. Comets have been observed in di erent spectral regions from rocket, ground and space borne optical instruments. The observed emission intensities are used to quantify the chemical abundances of di erent species in the comets. The study of various physical and chemical processes that govern these emissions is essential before estimating chemical abundances in the coma. Cameron band emission of CO molecule has been used to derive CO2 abundance in the comets based on the assumption that photodissociation of CO2 mainly produces these emissions. Similarly, the atomic oxygen visible emissions have been used to probe H2O in the cometary coma. The observed green ([OI] 5577 A) to red-doublet emission ([OI] 6300 and 6364 A) ratio has been used to con rm H2O as the parent species of these emissions. In this thesis a model is developed to understand the photochemistry of these emissions and applied to several comets. The model calculated emission intensities are compared with the observations done by space borne instruments like International Ultraviolet Explorer (IUE) and Hubble Space Telescope (HST) and also by various ground based telescopes.
Resumo:
The central theme of this research concerns the study of vibrationally excited molecules. We have used the local mode description of such vibrational states, and this -model has now gained general acceptance. A central feature of the model is the Wloealizafion of vibrational energy. A study of these high—energy localized states provides example, becauseof this localization, overtone spectra, which measure the absorption of T vibrational energy, are extremely sensitive to the properties of X-H bonds. We also use -overtone spectra to study the conformation of molecules, i.e., the relative internal orientation of their bonds. The thesis comprises six chapters
Resumo:
Zinc aluminate nanoparticles with average particle size of 40 nm were synthesized using a sol–gel combustion method. X-ray diffractometry result was analysed by Rietveld refinement method to establish the phase purity of the material. Different stages of phase formation of the material during the synthesis were investigated using differential scanning calorimetry and differential thermogravimetric analysis. Particle size was determined with transmission electron microscopy and the optical bandgap of the nanoparticles was determined by absorption spectroscopy in the ultraviolet-visible range. Dielectric permittivity and a.c. conductivity of the material were measured for frequencies from 100 kHz to 8 MHz in the temperature range of 30–120◦C. The presence of Maxwell– Wagner type interfacial polarization was found to exist in the material and hopping of electron by means of quantum mechanical tunneling is attributed as the reason for the observed a.c. conductivity
Resumo:
The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn1−xZnxFe2O4 (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn1−xZnxFe2O4. The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole–Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole–Cole plots and found to be consistent with each other and indicative of a polaron conduction
Resumo:
Ferrite composites are magnetic composites consisting of fine particles of metal ferrites dispersed in the polymer matrix. These composites have a variety of applications as flexible magnets, pressure/photo sensors and microwave absorbers. Polymers and magnetic materials play a very important role in our day to day life. Both natural and synthetic polymers are today indispensable to mankind. The polymers, which include rubber, plastics and fibers, make life easier and more comfortable.
Resumo:
Raman spectra of the KTP single crystal are recorded in electric fields (dc and ac) applied along the polar axis c. Spectra with the laser beam focused near the cathode end, anode end and the centre of the crystal are recorded. The cathode end of the crystal develops a spot ‘grey track’ where the laser beam is focused after a lapse of 5 h from the application of a dc electric field of 38 V/cm. The spectra recorded at the cathode end after the application of field show variations in intensity of bands. A new band appears at 177 cm21. Changes in band intensities are explained on the basis of changes in polarizability of the crystal due to the movement of K1 ions along the polar axis. K1 ions accumulate at the cathode end, where the ‘Grey track’ formation occurs. The intensity enhancement observed for almost all bands in the ac field is attributed to the improvement of crystalline quality.
Resumo:
Infrared and polarized Raman spectra of Cu(HSeO3) 2 - H20 single crystal have been recorded and analysed. The appearance of non-degenerate Se-OH stretching vibrations in the ~x: and ~y: polarizations of Raman spectra indicate distortion of the HSeO~- ion in the Cu(HSeO3)2 - H20 crystal. The low wavenumber values obtained for the symmetric and asymmetric stretching vibrations of the HSeO 3 ion are consistent with the strong hydrogen bonding and the influence of Jahn-Teller distortion as predicted in X-ray diffraction data. The shifting of the stretching and bending vibrations of the hydroxyl groups and water molecules from the free state values also confirms the strong hydrogen bonding in this crystal. Broad bands observed for both stretching and bending regions become sharp in the Raman spectrum recorded at 77 K. A doublet appears for the Se-OH stretching mode at this temperature indicating the settling of protons in an ordered position and the absence of intrabond proton tunnelling
Resumo:
Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 · 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3 − and H2O vibrations. Additional bands obtained in the region of 3 and 1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of 3 modes, since the BrO3 − ion occupies a site of lower symmetry. The appearance 1 mode of BrO3 − anion at a lower wavenumber (771 cm−1) is attributed to the attachment of hydrogen to the BrO3 − anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 · 3H2O structure is confirmed. The lifting of degeneracy of 4 mode indicates that the symmetry of BrO3 − anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77–523 K for various temperatures. A small structural rearrangement takes place in BrO3 − ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3 − ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal
Resumo:
Polarized Raman spectral changes with respect to temperature were investigated for Pr(BrO3)3·9H2O single crystals. FTIR spectra of hydrated and deuterated analogues were also recorded and analysed. Temperature dependent Raman spectral variation have been explained with the help of the thermograms recorded for the crystal. Factor group analysis could propose the appearance ofBrO3 ions at sites corresponding to C3v (4) and D3h (2). Analysis of the vibrational bands at room temperature confirms a distorted C3v symmetry for the BrO3 ion in the crystal. From the vibrations of water molecules, hydrogen bonds of varying strengths have also been identified in the crystal. The appearance υ1 mode of BrO3− anion at lower wavenumber region is attributed to the attachment of hydrogen atoms to the BrO3− anion. At high temperatures, structural rearrangement is taking place for bothH2Omolecule and BrO3 ions leading to the loss ofwater molecules and structural reorientation of bromate ions causing phase transition of the crystal at the temperature of 447 K.
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
A microscopic theory is presented for the photoacoustic effect induced in solids by x-ray absorption. The photoacoustic effect results from the thermalization of the excited Auger electrons and photoelectrons. We explain the dependence of the photoacoustic signal S on photon energy and the proportionality to the x-ray absorption coefficient in agreement with recent experiments on Cu. Results are presented for the dependence of S on photon energy, sample thickness, and the electronic structure of the absorbing solid.