934 resultados para Tube
Resumo:
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-fitted single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-fitted SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
采用激波管方法研究了酚醉树脂在温度1100K~1800K范围之间的热解过程.在激波管高温和短实验时间条件下,分析了实验样品颗粒在高温气相中的传热过程,讨论了样品颗粒达到热平衡的条件.通过色谱和质谱方法检测热解产物,获得了酚醛树脂高温热解产物分布和热解速率常数.酚醛树脂高温热解最主要的产物为水、一氧化碳、氢、乙炔和苯.温度1400 K将酚醛树脂热解分为高温和低温区,分别表现出不同的热解速率常数与温度的关系.