993 resultados para Travail émotif


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear-encoded proteins targeted to the chloroplast are typically synthesized with N-terminal transit peptides which are proteolytically removed upon import. Structurally related proteins of 145 and 143 kDa copurify with a soluble chloroplast processing enzyme (CPE) that cleaves the precursor for the major light-harvesting chlorophyll a/b binding protein and have been implicated in the maturation of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and acyl carrier protein. The 145- and 143-kDa proteins have not been found as a heterodimer and thus may represent functionally independent isoforms encoded by separate genes. Here we describe the primary structure of a 140-kDa polypeptide encoded by cDNAs isolated by using antibodies raised against the 145/143-kDa doublet. The 140-kDa polypeptide contains a transit peptide, and strikingly, a His-Xaa-Xaa-Glu-His zinc-binding motif that is conserved in a recently recognized family of metalloendopeptidases, which includes Escherichia coli protease III, insulin-degrading enzyme, and subunit beta of the mitochondrial processing peptidase. Identity of 25-30%, concentrated near the N terminus of the 140-kDa polypeptide, is found with these proteases. Expression of CPE in leaves is not light dependent. Indeed, transcripts are present in dark-grown plants, and the 145/143-kDa doublet and proteolytic activity are both found in etioplasts, as well as in root plastids. Thus, CPE appears to be a necessary component of the import machinery in photosynthetic and nonphotosynthetic tissues, and it may function as a general stromal processing peptidase in plastids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ran/TC4 is an essential, nuclear GTPase implicated in the initiation of DNA replication, entry into and exit from mitosis, and in nuclear RNA and protein transport through the nuclear pore complex. This diversity of functions suggests that Ran interacts with a large number of down-stream targets. Using an overlay assay, we detected a family of putative target proteins that associate with GTP-bound Ran. The sequence of only one such protein, HTF9a/RanBP1, is known. We have now cloned two additional Ran-binding proteins, allowing identification of a distinctive, highly conserved sequence motif of approximately 150 residues. This motif represents a minimal Ran-binding domain that stabilizes the GTP-bound state of Ran. The isolated domain also functions as a coactivator of Ran-GTPase-activating protein. Mutation of a conserved residue within the Ran-binding domain of HTF9a protein drastically reduced Ran binding. Ran-binding proteins coimmunoprecipitated with epitope-tagged Ran from cell lysates, suggesting that these proteins may associate in vivo. A previously uncharacterized Caenorhabditis elegans gene could encode a protein (96 kDa) possessing two Ran-binding domains. This open reading frame also contains similarities to nucleoporins, suggesting a functional link between Ran and nuclear pore complexes.