989 resultados para Trapped Microscopic Particles
Resumo:
The existence of loose particles left inside the sealed electronic devices is one of the main factors affecting the reliability of the whole system. It is important to identify the particle material for analyzing their source. The conventional material identification algorithms mainly rely on time, frequency and wavelet domain features. However, these features are usually overlapped and redundant, resulting in unsatisfactory material identification accuracy. The main objective of this paper is to improve the accuracy of material identification. First, the principal component analysis (PCA) is employed to reselect the nine features extracted from time and frequency domains, leading to six less correlated principal components. And then the reselected principal components are used for material identification using a support vector machine (SVM). Finally, the experimental results show that this new method can effectively distinguish the type of materials including wire, aluminum and tin particles.
Resumo:
The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.
Resumo:
Inland waters are of global biogeochemical importance. They receive carbon inputs of ~ 4.8 Pg C/ y of which, 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One aspect of this is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use as carbon (C) and nitrogen (N) sources within aquatic systems. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We experimentally tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and water sampled from the Oberer Seebach stream (Austria). Each incubation experienced a 16:8 light:dark regime, with metabolism monitored via changes in oxygen concentrations between photoperiods. The relative fate of the organo-mineral particles was quantified by tracing the mineralization of the 13C and 15N labels and their incorporation into microbial biomass. Here we present the initial results of 13C-label mineralization, incorporation and retention within dissolved organic carbon pool. The results indicate that 514 (± 219) μmol/ mmol of the 13:15N labeled free amino acids were mineralized over the 7-day incubations. By contrast, 186 (± 97) μmol/ mmol of the mineral-sorbed amino acids were mineralized over a similar period. Thus, organo-mineral complexation reduced amino acid mineralization by ~ 60 %, with no differences observed between the streamwater and biofilm assemblages. Throughout the incubations, biofilms were observed to leach dissolved organic carbon (DOC). However, within the streamwater assemblage the presence of both organo-mineral particles and kaolin particles was associated with significant DOC removal (-1.7 % and -7.5 % respectively). Consequently, the study demonstrates that mineral and organo-mineral particles can limit the availability of DOC in aquatic systems, providing nucleation sites for flocculation and fresh mineral surfaces, which facilitate OM-sorption. The formation of these organo-mineral particles subsequently restricts microbial OM degradation, potentially altering the transport and facilitating the burial of OM within streams.
Resumo:
An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u0. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.
Resumo:
In co-melt granulation, collisions occur between the particles to be agglomerated and the binder material. Depending on the stage of granulation, the binder material can be in the solid or liquid phase. The outcome of these collisions controls the dynamics of the granulation process and the fundamental physics of the impacts are of interest. This paper examines the impact of glass beads (model particles) and solid Poly Ethylene Glycol (PEG) flakes on a substrate of PEG as the temperature of the PEG layer is increased from below its melting point to above it. While the layer is in the solid state, the result of the impact can be quantified by the coefficient of restitution. When the layer is in the liquid state, the impact can be quantified by the immersion behaviour. The results obtained show that the coefficient of restitution between either glass beads and PEG flakes and the PEG layer is strongly affected by temperatures. As the PEG layer approaches its melting point, the coefficient of restitution falls to zero. Once the temperature of the PEG layer exceeds the melting point, the impact is characterised by a transient maximum indentation and then rebound to an equilibrium position. These too are strongly dependent on temperature.
Resumo:
O desenvolvimento de betões de elevado desempenho, durante o início da década de 80, revelou que este tipo particular de materiais com base em cimento é susceptível a problemas de cura. São bem conhecidos os efeitos dos fenómenos autogéneos em sistemas de elevado desempenho com base em cimento, nomeadamente a fissuração em idade jovem. Esta é, aliás vista como a maior limitação no desenvolvimento de novos materiais com durabilidade superior. Desenvolvimentos recentes de métodos de cura interna provaram ser uma boa estratégia de mitigação dos efeitos da auto-dissecação destes sistemas, onde a presente tese ganha o seu espaço no tempo. Este estudo centra-se essencialmente em sistemas de elevado desempenho com base em cimento com cura interna através de partículas superabsorventes, dando particular importância à alteração de volume em idade jovem. Da análise mais aprofundada deste método, resultam algumas limitações na sua aplicabilidade, especialmente em sistemas modificados com sílica de fumo. Conclui-se que a natureza física e química dos polímeros superabsorventes pode afectar significativamente a eficiência da cura interna. Em adição, os mecanismos de cura interna são discutidos mais profundamente, sendo que para além dos mecanismos baseados em fenómenos físicos e químicos, parecem existir efeitos mecânicos significativos. Várias técnicas foram utilizadas durante o decorrer desta investigação, com o objectivo, para além da caracterização de certas propriedades dos materiais, de perseguir as questões deixadas em aberto pela comunidade internacional, relativamente aos mecanismos que fundamentam a explicação dos fenómenos autogéneos. Como exemplo, são apresentados os estudos sobre hidratação dos sistemas para avaliação do problema numa escala microscópica, em vez de macroscópica. Uma nova técnica de cura interna emerge da investigação, baseada na utilização de agregados finos como veiculo para mitigar parcialmente a retracção autogénea. Até aqui, esta técnica não encontra par em investigação anterior, mas a extensão da cura interna ou a eficácia na mitigação baseada neste conceito encontra algumas limitações. A significância desta técnica em prevenir a micro fissuração é um aspecto que está ainda em aberto, mas pode concluir-se que os agregados finos podem ser benéficos na redução dos efeitos da restrição localizada no sistema, reduzindo o risco de micro fissuração. A utilização combinada de partículas finas de agregado e polímeros super absorventes pode ter como consequência betão sem microfissuração, ou pelo menos com nanofissuração.
Resumo:
A two-dimensional vertically integrated hydrodynamic model coupled to a particle tracking model is applied to study the dispersion processes and residence time in Ria de Aveiro lagoon (Portugal). The only dispersion process that is considered in this study is the advection, according to the main characteristics of the local hydrodynamic. The particle tracking model computes the particles position at each time step, using a fourth-order Runge-Kutta integration method. The dispersion of passive particles released along the lagoon and in critical areas are studied in this work. The residence time is also determined for the entire lagoon. The results show that the mixture between particles coming from different channels of the lagoon is negligible in a time scale higher than 2 tidal cycles. The residence time for the lagoon central area is about 2 days, revealing a strong marine influence in this area. At the upper reaches of the channels were found values higher than 2 weeks.
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2015
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The importance of hand hygiene in reducing the spread of pathogens has been long established and this has been highlighted recently in initiatives such as the NHS’s ‘clean your hands’ campaign. However, much of the focus on hand hygiene has concerned effective hand washing; there has been less emphasis on hand drying and its role in hygienic practices. This study aimed to compare three hand drying methods namely paper towels, a warm air dryer and a jet air dryer for their relative ability to disseminate virus particles into the washroom environment during hand drying. A bacteriophage model was used to compare these methods; hands were artificially contaminated with MS2 phage and dried using each device. Both air sampling and contact plates were assessed and a plaque assay was used to quantify virus dissemination. Samples were collected at set times, heights, angles and distances around each device. Both air sampling and contact plate results indicated that the jet air dryer produced significantly more virus dispersal than either paper towels or the warm air dryer in terms of quantity, distance travelled and the time spent circulating in the air around the device and potentially in the washroom environment.
Resumo:
The simultaneous presence of fungi and particles in horse stable environment can create a singular exposure condition because particles have been reported has a good carrier for microorganisms and their metabolites. This study intends to characterize this setting and to recognize fungi and particles occupational exposure.
Resumo:
This paper studies the dynamics of a system composed of a collection of particles that exhibit collisions between them. Several entropy measures and different impact conditions of the particles are tested. The results reveal a Power Law evolution both of the system energy and the entropy measures, typical in systems having fractional dynamics.