991 resultados para Training workshops
Resumo:
This paper presents a novel design of a virtual dental training system (hapTEL) using haptic technology. The system allows dental students to learn and practice procedures such as dental drilling, caries removal and cavity preparation for tooth restoration. This paper focuses on the hardware design, development and evaluation aspects in relation to the dental training and educational requirements. Detailed discussions on how the system offers dental students a natural operational position are documented. An innovative design of measuring and connecting the dental tools to the haptic device is also shown. Evaluation of the impact on teaching and learning is discussed.
Resumo:
From 2003-2006, an EU network project ‘Sustaining Animal Health and Food Safety in Organic Farming' (SAFO), was carried out with 26 partners from 20 EU-countries and 4 related partners from 4 candidate or new member states. The focus was the integration of animal health and welfare issues in organic farming with food safety aspects. Four very consistent conclusions became apparent: 1) The climatic, physical and socio-economic conditions vary considerably throughout Europe, leading to different livestock farming systems. This limits the possibility for technology transfer between regions, and creates several challenges for a harmonised regulation, 2) Implementing organic standards at farm level does not always ensure that animal health and welfare reach the high ideals of the organic principles, 3) To overcome these deficiencies, organic farmers and farmer organisations need to take ownership of organic values and, 4) In all participating countries, a strong need for training of farmers and in particular veterinarians in animal health promotion and organic principles was identified. The article presents a summary of papers presented at the five SAFO workshops.
Resumo:
The speed of convergence while training is an important consideration in the use of neural nets. The authors outline a new training algorithm which reduces both the number of iterations and training time required for convergence of multilayer perceptrons, compared to standard back-propagation and conjugate gradient descent algorithms.
Resumo:
Presents a technique for incorporating a priori knowledge from a state space system into a neural network training algorithm. The training algorithm considered is that of chemotaxis and the networks being trained are recurrent neural networks. Incorporation of the a priori knowledge ensures that the resultant network has behaviour similar to the system which it is modelling.