943 resultados para Tiling geometry
Resumo:
Background: Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol. Results: Here we study the transcriptional organization of the ICEclc core region. By northern hybridizations, reverse-transcriptase polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends (5'-RACE) fifteen transcripts were mapped in the core region. The occurrence and location of those transcripts were further confirmed by hybridizing labeled cDNA to a semi-tiling micro-array probing both strands of the ICEclc core region. Dot blot and semi-tiling array hybridizations demonstrated most of the core transcripts to be upregulated during stationary phase on 3-chlorobenzoate, but not on succinate or glucose. Conclusions: The transcription analysis of the ICEclc core region provides detailed insights in the mode of regulatory organization and will help to further understand the complex mode of behavior of this class of mobile elements. We conclude that ICEclc core transcription is concerted at a global level, more reminiscent of a phage program than of plasmid conjugation.
Resumo:
Although the human-landing catch (HLC) method is the most effective for collecting anthropophilic anophelines, it has been increasingly abandoned, primarily for ethical considerations. The objective of the present study was to develop a new trap for the collection of Anopheles darlingi . The initial trials were conducted using the BG-Sentinel trap as a standard for further trap development based on colour, airflow direction and illumination. The performance of the trap was then compared with those of the CDC, Fay-Prince, counterflow geometry trap (CFG) and HLC. All trials were conducted outdoors between 06:00 pm-08:00 pm. Female specimens of An. darlingi were dissected to determine their parity. A total of 8,334 anophelines were captured, of which 4,945 were identified as An. darlingi . The best trap configuration was an all-white version, with an upward airflow and no required light source. This configuration was subsequently named BG-Malaria (BGM). The BGM captured significantly more anophelines than any of the other traps tested and was similar to HLC with respect to the number and parity of anophelines. The BGM trap can be used as an alternative to HLC for collecting anophelines.
Resumo:
In mice, barrels in layer IV of the somatosensory cortex correspond to the columnar representations of whisker follicles. In barrelless (BRL) mice, barrels are absent, but functionally, a columnar organization persists. Previously we characterized the aberrant geometry of thalamic projection of BRL mice using axonal reconstructions of individual neurons. Here we proceeded with the analysis of the intracortical projections from layer VI pyramidal neurons, to assess their contribution to the columnar organization. From series of tangential sections we reconstructed the axon collaterals of individual layer VI pyramidal neurons in the C2 barrel column that were labelled with biocytin [controls from normal (NOR) strain, 19 cells; BRL strain, nine cells]. Using six morphological parameters in a cluster analysis, we showed that layer VI neurons in NOR mice are distributed into four clusters distinguished by the radial and tangential extent of their intracortical projections. These clusters correlated with the cortical or subcortical projection of the main axon. In BRL mice, neurons were distributed within the same four clusters, but their projections to the granular and supragranular layers were significantly smaller and their tangential projection was less columnar than in NOR mice. However, in both strains the intracortical projections had a preference for the appropriate barrel column (C2), indicating that layer VI pyramidal cells could participate in the functional columnar organization of the barrel cortex. Correlative light and electron microscopy analyses provided morphometric data on the intracortical synaptic boutons and synapses of layer VI pyramidal neurons and revealed that projections to layer IV preferentially target excitatory dendritic spines and shafts.
Resumo:
Purpose: To develop and evaluate a practical method for the quantification of signal-to-noise ratio (SNR) on coronary MR angiograms (MRA) acquired with parallel imaging.Materials and Methods: To quantify the spatially varying noise due to parallel imaging reconstruction, a new method has been implemented incorporating image data acquisition followed by a fast noise scan during which radio-frequency pulses, cardiac triggering and navigator gating are disabled. The performance of this method was evaluated in a phantom study where SNR measurements were compared with those of a reference standard (multiple repetitions). Subsequently, SNR of myocardium and posterior skeletal muscle was determined on in vivo human coronary MRA.Results: In a phantom, the SNR measured using the proposed method deviated less than 10.1% from the reference method for small geometry factors (<= 2). In vivo, the noise scan for a 10 min coronary MRA acquisition was acquired in 30 s. Higher signal and lower SNR, due to spatially varying noise, were found in myocardium compared with posterior skeletal muscle.Conclusion: SNR quantification based on a fast noise scan is a validated and easy-to-use method when applied to three-dimensional coronary MRA obtained with parallel imaging as long as the geometry factor remains low.
Resumo:
Granitic and mafic magma pulses were sequentially accreted in the spectacularly exposed shallow crustal Torres del Paine laccolith, in southern Patagonia. This 12.5 Ma pluton forms a composite intrusion with a subvertical feeding system in the west and a laccolith in the east. A key unknown in the formation of sill complexes is how individual magma pulses are assembled over time and the geometry and localization of their feeding system. High resolution zircon CA-ID-TIMS U-Pb dating shows that the laccolith grew first by under-accretion of granitic sills over 90 +/- 30 ka, linked to a `sheet-like' feeding system, followed by underplating of mafic sills after similar to 20 ka of quiescence. In the mafic sills complex, individual sills were injected by over-accretion during 41 +/- 11 ka. Our data show that successive granitic and mafic magmas emplacement generated a volume of similar to 88 km(3) in 162 +/- 11 ka. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Geochemical data that is derived from the whole or partial analysis of various geologic materialsrepresent a composition of mineralogies or solute species. Minerals are composed of structuredrelationships between cations and anions which, through atomic and molecular forces, keep the elementsbound in specific configurations. The chemical compositions of minerals have specific relationships thatare governed by these molecular controls. In the case of olivine, there is a well-defined relationshipbetween Mn-Fe-Mg with Si. Balances between the principal elements defining olivine composition andother significant constituents in the composition (Al, Ti) have been defined, resulting in a near-linearrelationship between the logarithmic relative proportion of Si versus (MgMnFe) and Mg versus (MnFe),which is typically described but poorly illustrated in the simplex.The present contribution corresponds to ongoing research, which attempts to relate stoichiometry andgeochemical data using compositional geometry. We describe here the approach by which stoichiometricrelationships based on mineralogical constraints can be accounted for in the space of simplicialcoordinates using olivines as an example. Further examples for other mineral types (plagioclases andmore complex minerals such as clays) are needed. Issues that remain to be dealt with include thereduction of a bulk chemical composition of a rock comprised of several minerals from which appropriatebalances can be used to describe the composition in a realistic mineralogical framework. The overallobjective of our research is to answer the question: In the cases where the mineralogy is unknown, arethere suitable proxies that can be substituted?Kew words: Aitchison geometry, balances, mineral composition, oxides
Resumo:
Objectives: We are interested in the numerical simulation of the anastomotic region comprised between outflow canula of LVAD and the aorta. Segmenta¬tion, geometry reconstruction and grid generation from patient-specific data remain an issue because of the variable quality of DICOM images, in particular CT-scan (e.g. metallic noise of the device, non-aortic contrast phase). We pro¬pose a general framework to overcome this problem and create suitable grids for numerical simulations.Methods: Preliminary treatment of images is performed by reducing the level window and enhancing the contrast of the greyscale image using contrast-limited adaptive histogram equalization. A gradient anisotropic diffusion filter is applied to reduce the noise. Then, watershed segmentation algorithms and mathematical morphology filters allow reconstructing the patient geometry. This is done using the InsightToolKit library (www.itk.org). Finally the Vascular Model¬ing ToolKit (www.vmtk.org) and gmsh (www.geuz.org/gmsh) are used to create the meshes for the fluid (blood) and structure (arterial wall, outflow canula) and to a priori identify the boundary layers. The method is tested on five different patients with left ventricular assistance and who underwent a CT-scan exam.Results: This method produced good results in four patients. The anastomosis area is recovered and the generated grids are suitable for numerical simulations. In one patient the method failed to produce a good segmentation because of the small dimension of the aortic arch with respect to the image resolution.Conclusions: The described framework allows the use of data that could not be otherwise segmented by standard automatic segmentation tools. In particular the computational grids that have been generated are suitable for simulations that take into account fluid-structure interactions. Finally the presented method features a good reproducibility and fast application.
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocksbased on compositional statistics is introduced. It improves and generalizes the commonjoins-count statistics known from map analysis in geographic information systems.Assigning phases independently to objects in RD is modelled by a single-trial multinomialrandom function Z(x), where the probabilities of phases add to one and areexplicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistenciesof the tests based on the conventional joins{count statistics and their possiblycontradictory interpretations are avoided. In practical applications we assume that theprobabilities of phases do not depend on the location but are identical everywhere inthe domain of de nition. Thus, the model involves the sum of r independent identicalmultinomial distributed 1-trial random variables which is an r-trial multinomialdistributed random variable. The probabilities of the distribution of the r counts canbe considered as a composition in the Q-part simplex SQ. They span the so calledHardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This isa generalisation of the well-known Hardy-Weinberg law of genetics. If the assignmentof phases accounts for some kind of spatial dependence, then the r-trial probabilitiesdo not remain on H. This suggests the use of the Aitchison distance between observedprobabilities to H to test dependence. Moreover, when there is a spatial uctuation ofthe multinomial probabilities, the observed r-trial probabilities move on H. This shiftcan be used as to check for these uctuations. A practical procedure and an algorithmto perform the test have been developed. Some cases applied to simulated and realdata are presented.Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinbergmanifold, Aitchison geometry
Resumo:
Polarized and G-polarized CR manifolds are smooth manifolds endowed with a double structure: a real foliation &em&F&/em& (given by the action of a Lie group G in the G-polarized case) and a transverse CR distribution. Polarized means that (E,J) is roughly speaking invariant by&em&F&/em&. Both structures are therefore linked up. The interplay between them gives to polarized CR-manifolds a very rich geometry. In this paper, we study the properties of polarized and G-polarized manifolds, putting special emphasis on their deformations.
Resumo:
High-resolution tomographic imaging of the shallow subsurface is becoming increasingly important for a wide range of environmental, hydrological and engineering applications. Because of their superior resolution power, their sensitivity to pertinent petrophysical parameters, and their far reaching complementarities, both seismic and georadar crosshole imaging are of particular importance. To date, corresponding approaches have largely relied on asymptotic, ray-based approaches, which only account for a very small part of the observed wavefields, inherently suffer from a limited resolution, and in complex environments may prove to be inadequate. These problems can potentially be alleviated through waveform inversion. We have developed an acoustic waveform inversion approach for crosshole seismic data whose kernel is based on a finite-difference time-domain (FDTD) solution of the 2-D acoustic wave equations. This algorithm is tested on and applied to synthetic data from seismic velocity models of increasing complexity and realism and the results are compared to those obtained using state-of-the-art ray-based traveltime tomography. Regardless of the heterogeneity of the underlying models, the waveform inversion approach has the potential of reliably resolving both the geometry and the acoustic properties of features of the size of less than half a dominant wavelength. Our results do, however, also indicate that, within their inherent resolution limits, ray-based approaches provide an effective and efficient means to obtain satisfactory tomographic reconstructions of the seismic velocity structure in the presence of mild to moderate heterogeneity and in absence of strong scattering. Conversely, the excess effort of waveform inversion provides the greatest benefits for the most heterogeneous, and arguably most realistic, environments where multiple scattering effects tend to be prevalent and ray-based methods lose most of their effectiveness.
Resumo:
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5' regulatory sequence variation in the corresponding genes is indeed increased. However, approximately 42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.
Resumo:
Sackung is a widespread post-glacial morphological feature affecting Alpine mountains and creating characteristic geomorphological expression that can be detected from topography. Over long time evolution, internal deformation can lead to the formation of rapidly moving phenomena such as a rock-slide or rock avalanche. In this study, a detailed description of the Sierre rock-avalanche (SW Switzerland) is presented. This convex-shaped postglacial instability is one of the larger rock-avalanche in the Alps, involving more than 1.5 billion m3 with a run-out distance of about 14 km and extremely low Fahrböschung angle. This study presents comprehensive analyses of the structural and geological characteristics leading to the development of the Sierre rock-avalanche. In particular, by combining field observations, digital elevation model analyses and numerical modelling, the strong influence of both ductile and brittle tectonic structures on the failure mechanism and on the failure surface geometry is highlighted. The detection of pre-failure deformation indicates that the development of the rock avalanche corresponds to the last evolutionary stage of a pre-existing deep seated gravitational slope instability. These analyses accompanied by the dating and the characterization of rock avalanche deposits, allow the proposal of a destabilization model that clarifies the different phases leading to the development of the Sierre rock avalanche.
Resumo:
An efficient high-resolution (HR) three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two-dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south-east-dipping Tertiary Molasse beds and a major fault zone (Paudeze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three-streamer system. It provided high-quality data with a penetration to depths of 300 m below the water bottom of non-aliased signal for dips up to 30degrees and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post-stack time migration. Tests with 3D pre-stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre-existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudeze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudeze Fault in our surveyed area.