939 resultados para Termination
Resumo:
Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for –1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem–loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gag–pol and HTLV-2 gag–pro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem–loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.
Resumo:
The genes rbcS and rbcL encode, respectively, the small and large subunits of the photosynthetic carbon dioxide fixation enzyme ribulose bisphosphate carboxylase/oxygenase. There is a single rbcL gene in each chloroplast chromosome; a family of rbcS genes is located in the nuclear genome. These two genes are not expressed in mesophyll cells but are in adjacent bundle-sheath cells of leaves of the C4 plant Zea mays. Two regions of the maize gene rbcS-m3 are required for suppressing expression in mesophyll cells. One region is just beyond the translation termination site in the 3′ region, and the other is several hundred base pairs upstream of the transcription start site. A binding site for a protein with limited homology to the viral, yeast, and mammalian transcription repressor-activator YY1 (Yin-Yang I), has now been identified in the 3′ region. A maize gene for a protein with zinc fingers homologous to those of YY1 has been isolated, characterized, and expressed in Escherichia coli. The gene is designated trm1 (transcription repressor-maize 1). The protein TRM1 binds to the YY1-like site and, in addition, TRM1 binds to two sequence regions in the 5′ region of the gene that have no homology to the YY1 site. Mutagenesis or deletion of any of these three sequences eliminates repression of rbcS-m3 reporter genes in mesophyll cells.
Resumo:
Sets of RNA ladders can be synthesized by transcription of a bacteriophage-encoded RNA polymerase using 3′-deoxynucleotides as chain terminators. These ladders can be used for sequencing of DNA. Using a nicked form of phage SP6 RNA polymerase in this study substantially enhanced yields of transcriptional sequencing ladders. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of chain-terminated RNA ladders allowed DNA sequence determination of up to 56 nt. It is also demonstrated that A→G and C→T variations in heterozygous and homozygous samples can be unambiguously identified by the mass spectrometric analysis. As a step towards single-tube sequencing reactions, α-thiotriphosphate nucleotide analogs were used to overcome problems caused by chain terminator-independent, premature termination and by the small mass difference between natural pyrimidine nucleotides.
Resumo:
Effective antiviral agents are thought to inhibit hepatitis B virus (HBV) DNA synthesis irreversibly by chain termination because reverse transcriptases (RT) lack an exonucleolytic activity that can remove incorporated nucleotides. However, since the parameters governing this inhibition are poorly defined, fully delineating the catalytic mechanism of the HBV-RT promises to facilitate the development of antiviral drugs for treating chronic HBV infection. To this end, pyrophosphorolysis and pyrophosphate exchange, two nonhydrolytic RT activities that result in the removal of newly incorporated nucleotides, were characterized by using endogenous avian HBV replication complexes assembled in vivo. Although these activities are presumed to be physiologically irrelevant for every polymerase examined, the efficiency with which they are catalyzed by the avian HBV-RT strongly suggests that it is the first known polymerase to catalyze these reactions under replicative conditions. The ability to remove newly incorporated nucleotides during replication has important biological and clinical implications: these activities may serve a primer-unblocking function in vivo. Analysis of pyrophosphorolysis on chain-terminated DNA revealed that the potent anti-HBV drug β-l-(−)-2′,3′-dideoxy-3′-thiacytidine (3TC) was difficult to remove by pyrophosphorolysis, in contrast to ineffective chain terminators such as ddC. This disparity may account for the strong antiviral efficacy of 3TC versus that of ddC. The HBV-RT pyrophosphorolytic activity may therefore be a novel determinant of antiviral drug efficacy, and could serve as a target for future antiviral drug therapy. The strong inhibitory effect of cytoplasmic pyrophosphate concentrations on viral DNA synthesis may also partly account for the apparent slow rate of HBV genome replication.
Resumo:
How does a protease act like a hormone to regulate cellular functions? The coagulation protease thrombin (EC 3.4.21.5) activates platelets and regulates the behavior of other cells by means of G protein-coupled protease-activated receptors (PARs). PAR1 is activated when thrombin binds to and cleaves its amino-terminal exodomain to unmask a new receptor amino terminus. This new amino terminus then serves as a tethered peptide ligand, binding intramolecularly to the body of the receptor to effect transmembrane signaling. The irreversibility of PAR1’s proteolytic activation mechanism stands in contrast to the reversible ligand binding that activates classical G protein-coupled receptors and compels special mechanisms for desensitization and resensitization. In endothelial cells and fibroblasts, activated PAR1 rapidly internalizes and then sorts to lysosomes rather than recycling to the plasma membrane as do classical G protein-coupled receptors. This trafficking behavior is critical for termination of thrombin signaling. An intracellular pool of thrombin receptors refreshes the cell surface with naïve receptors, thereby maintaining thrombin responsiveness. Thus cells have evolved a trafficking solution to the signaling problem presented by PARs. Four PARs have now been identified. PAR1, PAR3, and PAR4 can all be activated by thrombin. PAR2 is activated by trypsin and by trypsin-like proteases but not by thrombin. Recent studies with knockout mice, receptor-activating peptides, and blocking antibodies are beginning to define the role of these receptors in vivo.
Resumo:
Ullrich syndrome is a recessive congenital muscular dystrophy affecting connective tissue and muscle. The molecular basis is unknown. Reverse transcription–PCR amplification performed on RNA extracted from fibroblasts or muscle of three Ullrich patients followed by heteroduplex analysis displayed heteroduplexes in one of the three genes coding for collagen type VI (COL6). In patient A, we detected a homozygous insertion of a C leading to a premature termination codon in the triple-helical domain of COL6A2 mRNA. Both healthy consanguineous parents were carriers. In patient B, we found a deletion of 28 nucleotides because of an A → G substitution at nucleotide −2 of intron 17 causing the activation of a cryptic acceptor site inside exon 18. The second mutation was an exon skipping because of a G → A substitution at nucleotide −1 of intron 23. Both mutations are present in an affected brother. The first mutation is also present in the healthy mother, whereas the second mutation is carried by their healthy father. In patient C, we found only one mutation so far—the same deletion of 28 nucleotides found in patient B. In this case, it was a de novo mutation, as it is absent in her parents. mRNA and protein analysis of patient B showed very low amounts of COL6A2 mRNA and of COL6. A near total absence of COL6 was demonstrated by immunofluorescence in fibroblasts and muscle. Our results demonstrate that Ullrich syndrome is caused by recessive mutations leading to a severe reduction of COL6.
Resumo:
Opium poppy (Papaver somniferum) contains a large family of tyrosine/dihydroxyphenylalanine decarboxylase (tydc) genes involved in the biosynthesis of benzylisoquinoline alkaloids and cell wall-bound hydroxycinnamic acid amides. Eight members from two distinct gene subfamilies have been isolated, tydc1, tydc4, tydc6, tydc8, and tydc9 in one group and tydc2, tydc3, and tydc7 in the other. The tydc8 and tydc9 genes were located 3.2 kb apart on one genomic clone, suggesting that the family is clustered. Transcripts for most tydc genes were detected only in roots. Only tydc2 and tydc7 revealed expression in both roots and shoots, and TYDC3 mRNAs were the only specific transcripts detected in seedlings. TYDC1, TYDC8, and TYDC9 mRNAs, which occurred in roots, were not detected in elicitor-treated opium poppy cultures. Expression of tydc4, which contains a premature termination codon, was not detected under any conditions. Five tydc promoters were fused to the β-glucuronidase (GUS) reporter gene in a binary vector. All constructs produced transient GUS activity in microprojectile-bombarded opium poppy and tobacco (Nicotiana tabacum) cell cultures. The organ- and tissue-specific expression pattern of tydc promoter-GUS fusions in transgenic tobacco was generally parallel to that of corresponding tydc genes in opium poppy. GUS expression was most abundant in the internal phloem of shoot organs and in the stele of roots. Select tydc promoter-GUS fusions were also wound induced in transgenic tobacco, suggesting that the basic mechanisms of developmental and inducible tydc regulation are conserved across plant species.
Resumo:
Suspension-cultured Chenopodium album L. cells are capable of continuous, long-term growth on a boron-deficient medium. Compared with cultures grown with boron, these cultures contained more enlarged and detached cells, had increased turbidity due to the rupture of a small number of cells, and contained cells with an increased cell wall pore size. These characteristics were reversed by the addition of boric acid (≥7 μm) to the boron-deficient cells. C. album cells grown in the presence of 100 μm boric acid entered the stationary phase when they were not subcultured, and remained viable for at least 3 weeks. The transition from the growth phase to the stationary phase was accompanied by a decrease in the wall pore size. Cells grown without boric acid or with 7 μm boric acid were not able to reduce their wall pore size at the transition to the stationary phase. These cells could not be kept viable in the stationary phase, because they continued to expand and died as a result of wall rupture. The addition of 100 μm boric acid prevented wall rupture and the wall pore size was reduced to normal values. We conclude that boron is required to maintain the normal pore structure of the wall matrix and to mechanically stabilize the wall at growth termination.
Resumo:
Insertion of introns into cloned cDNA of two isolates of the plant potyvirus pea seedborne mosaic virus facilitated plasmid amplification in Escherichia coli. Multiple stop codons in the inserted introns interrupted the open reading frame of the virus cDNA, thereby terminating undesired translation of virus proteins in E. coli. Plasmids containing the full-length virus sequences, placed under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase termination signal, were stable and easy to amplify in E. coli if one or more introns were inserted into the virus sequence. These plasmids were infectious when inoculated mechanically onto Pisum sativum leaves. Examination of the cDNA-derived viruses confirmed that intron splicing of in vivo transcribed pre-mRNA had occurred as predicted, reestablishing the virus genome sequences. Symptom development and virus accumulation of the cDNA derived viruses and parental viruses were identical. It is proposed that intron insertion can be used to facilitate manipulation and amplification of cloned DNA fragments that are unstable in, or toxic to, E. coli. When transcribed in vivo in eukaryotic cells, the introns will be eliminated from the sequence and will not interfere with further analysis of protein expression or virus infection.