940 resultados para Temporal constraints analysis
Resumo:
The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The d13C values of methane range from a minimum value of -82.2 per mil on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of -39.5 per mil at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from -22.5 per mil to +25.7 per mil. The magnitude of the carbon isotope separation between methane and CO2 (Ec = 63.8 ± 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform dDCH4 values (-172 per mil ± 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5 per mil. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25 per mil and increases to ~ 40 per mil at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C-enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.
Resumo:
A 181 m deep ice core drilled in 1994/95 on the south dome of Berkner Island, Antarctica, was analyzed for stable isotopes, major ions and microparticle concentrations. Samples for ion chromatography were prepared by using a novel technique of filling decontaminated sample from a device for continuous ice-core melting directly into the sample vials. The core was dated through identification of volcanic horizons and interpolative layer counting. The core, together with a similar core from the north dome, reveals a 1000 year history of relatively stable climate. Temporal variations in the two cores deviate from each other owing to changing patterns of regional-scale circulation; the best correspondence between them is found for MSA-. delta18O, accumulation rate and a sea-salt proxy show only negligible correlation, which suggests a complex meteorological setting. Increasing annual accumulation is observed for the last 100 years. A period of increased sea-salt concentrations started around AD 1405, as has also been observed in other cores. Microparticle concentrations are on average 1220 particles (>=1.0 ?m diameter)/mL; they are enhanced from AD 1200 to 1350, possibly because of a higher atmospheric mineral dust load or because local volcanic activity was stronger than previously thought. Microparticles and NH4+show marked but multiple and very irregular sub-annual peaks; long-term stacking of 1 year data intervals yields seasonal maxima in austral spring or mid-summer, respectively. Post-depositional redistribution was observed for MSA, NO3- and F- at volcanic horizons.
Resumo:
The distribution of radioactivities in a large polymetallic encrustation (TECHNO) sampled from the Pacific sea floor has been studied in great detail. The study includes measurements of the long-lived U and Th decay series isotopes, alpha-particle tracks and SUP-10 Be and SUP-26 Al (Results on the latter two cosmonuclides have been reported by Guichard, Reyss and Yokoyama, 1978). The data are discussed in terms of their implication on age dating of the sample. Two interpretations of the data are presented leading to vastly different time scales for the formation of the sample. Here the opinion is divided among the authorship. One group, as well as Guichard et al (1978), favours the million-years scale and the other favors scale measured in thousands of years. The principal pros-and-cons aspects of the two views are mentioned.