985 resultados para Temporal Resources
Resumo:
This report presents the results of the second (in 1975) fisheries resource survey for Lake Wamala conducted from 10th to 16th July 1975. The first similar survey covered the period 14th to 20th May 1975. The areas sampled consisted of the river-month areas, the papyrus-fringed inshore waters and the open dee offshore waters. In an effort to find the possible major causes of the decline in catch and seasonal disappearance of fish-hence a solution to the problem(s)-a second fisheries resource survey using multifilament nylon gillnets was conducted on Lake Kijanebalola during the period 17th to 21st July 1975. The first survey was similar and covered the period 21st to 27th May 1975.
Resumo:
The use of mixture-model techniques for motion estimation and image sequence segmentation was discussed. The issues such as modeling of occlusion and uncovering, determining the relative depth of the objects in a scene, and estimating the number of objects in a scene were also investigated. The segmentation algorithm was found to be computationally demanding, but the computational requirements were reduced as the motion parameters and segmentation of the frame were initialized. The method provided a stable description, in whichthe addition and removal of objects from the description corresponded to the entry and exit of objects from the scene.
Resumo:
We propose a novel model for the spatio-temporal clustering of trajectories based on motion, which applies to challenging street-view video sequences of pedestrians captured by a mobile camera. A key contribution of our work is the introduction of novel probabilistic region trajectories, motivated by the non-repeatability of segmentation of frames in a video sequence. Hierarchical image segments are obtained by using a state-of-the-art hierarchical segmentation algorithm, and connected from adjacent frames in a directed acyclic graph. The region trajectories and measures of confidence are extracted from this graph using a dynamic programming-based optimisation. Our second main contribution is a Bayesian framework with a twofold goal: to learn the optimal, in a maximum likelihood sense, Random Forests classifier of motion patterns based on video features, and construct a unique graph from region trajectories of different frames, lengths and hierarchical levels. Finally, we demonstrate the use of Isomap for effective spatio-temporal clustering of the region trajectories of pedestrians. We support our claims with experimental results on new and existing challenging video sequences. © 2011 IEEE.
Resumo:
Physical modelling of interesting geotechnical problems has helped clarify behaviours and failure mechanisms of many civil engineering systems. Interesting visual information from physical modelling can also be used in teaching to foster interest in geotechnical engineering and recruit young researchers to our field. With this intention, the Teaching Committee of TC2 developed a web-based teaching resources centre. In this paper, the development and organisation of the resource centre using Wordpress. Wordpress is an open-source content management system which allows user content to be edited and site administration to be controlled remotely via a built-in interface. Example data from a centrifuge test on shallow foundations which could be used for undergraduate or graduate level courses is presented and its use illustrated. A discussion on the development of wiki-style addition to the resource centre for commonly used physical model terms is also presented. © 2010 Taylor & Francis Group, London.
Resumo:
Several studies have highlighted the importance of information and information quality in organisations and thus information is regarded as key determinant for the success and organisational performance. In this paper, we review selected contributions and introduce a model that shows how IS/IT resources and capabilities could be interlinked with IS/IT utilization, organizational performance and business value. Complementing other models and frameworks, we explicitly consider information from a management maturity, quality and risk perspective and show how the new framework can be operationalized with existing assessment approaches by using empirical data from four industrial case studies. © 2012 Springer-Verlag.
Resumo:
Effective management is a key to ensuring the current and future sustainability of land, water and energy resources. Identifying the complexities of such management is not an easy task, especially since past studies have focussed on studying these resources in isolation from one another. However, with rapid population growth and an increase in the awareness of a potential change in climatic conditions that may affect the demand for and supply of food, water and energy, there has been a growing need to integrate the planning decisions relating to these three resources. The paper shows the visualisation of linked resources by drawing a set of interconnected Sankey diagrams for energy, water and land. These track the changes from basic resource (e.g. coal, surface water, groundwater and cropland) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). The focus here is on the water analysis aspects of the tool, which uses California as a detailed case study. The movement of water in California is traced from its source to its services by mapping the different transformations of water from when it becomes available, through its use, to further treatment, to final sinks (including recycling and reuse of that resource). The connections that water has with energy and land resources for the state of California are highlighted. This includes the amount of energy used to pump and treat water, and the amount of water used for energy production and the land resources which create a water demand to produce crops for food. By mapping water in this way, policy-makers and resource managers can more easily understand the competing uses of water (environment, agriculture and urban use) through the identification of the services it delivers (e.g. sanitation, agriculture, landscaping), the potential opportunities for improving the management of the resource (e.g. building new desalination plants, reducing the demand for services), and the connections with other resources which are often overlooked in a traditional sector-based management strategy.
Resumo:
Vision tracking has significant potential for tracking resources on large scale, congested construction sites, where a small number of cameras strategically placed around the site could replace hundreds of tracking tags. The correlation of vision tracking 2D positions from multiple views can provide the 3D position. However, there are many 2D vision trackers available in the literature, and little information is available on which one is most effective for construction applications. In this paper, a comparative study of various vision tracker categories is carried out, to identify which one is most effective in tracking construction resources. Testing parameters for evaluating categories of trackers are identified, and benefits and limitations of each category are presented. The most promising trackers are tested using a database of construction operations videos. The results indicate the effectiveness of each tracker in relation to each parameter of the test, and the most suitable tracker needed to research effective 3D vision trackers of construction resources.
Resumo:
When tracking resources in large-scale, congested, outdoor construction sites, the cost and time for purchasing, installing and maintaining the position sensors needed to track thousands of materials, and hundreds of equipment and personnel can be significant. To alleviate this problem a novel vision based tracking method that allows each sensor (camera) to monitor the position of multiple entities simultaneously has been proposed. This paper presents the full-scale validation experiments for this method. The validation included testing the method under harsh conditions at a variety of mega-project construction sites. The procedure for collecting data from the sites, the testing procedure, metrics, and results are reported. Full-scale validation demonstrates that the novel vision tracking provides a good solution to track different entities on a large, congested construction site.
Resumo:
Vision trackers have been proposed as a promising alternative for tracking at large-scale, congested construction sites. They provide the location of a large number of entities in a camera view across frames. However, vision trackers provide only two-dimensional (2D) pixel coordinates, which are not adequate for construction applications. This paper proposes and validates a method that overcomes this limitation by employing stereo cameras and converting 2D pixel coordinates to three-dimensional (3D) metric coordinates. The proposed method consists of four steps: camera calibration, camera pose estimation, 2D tracking, and triangulation. Given that the method employs fixed, calibrated stereo cameras with a long baseline, appropriate algorithms are selected for each step. Once the first two steps reveal camera system parameters, the third step determines 2D pixel coordinates of entities in subsequent frames. The 2D coordinates are triangulated on the basis of the camera system parameters to obtain 3D coordinates. The methodology presented in this paper has been implemented and tested with data collected from a construction site. The results demonstrate the suitability of this method for on-site tracking purposes.
Resumo:
Several studies have highlighted the importance of information and information quality in organisations and thus information is regarded as key determinant for the success and organisational performance. At the same time, there are numerous studies, frameworks and case studies examining the impact of information technology and systems to business value. Recently, several studies have proposed maturity models for information management capabilities in the literature, which claim that a higher maturity results in a higher organizational performance. Although these studies provide valuable information about the underlying relations, most are limited in specifying the relationship in more detail. Furthermore, most prominent approaches do not or at least not explicitly consider information as important influencing factor for organisational performance. In this paper, we aim to review selected contributions and introduce a model that shows how IS/IT resources and capabilties could be interlinked with IS/IT utilization, organizational performance and business value. Complementing other models and frameworks, we explicitly consider information from a management maturity, quality and risk perspective. Moreover, the paper discusses how each part of the model can be assessed in order to validate the model in future studies.
Resumo:
Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.
Resumo:
The ability to use environmental stimuli to predict impending harm is critical for survival. Such predictions should be available as early as they are reliable. In pavlovian conditioning, chains of successively earlier predictors are studied in terms of higher-order relationships, and have inspired computational theories such as temporal difference learning. However, there is at present no adequate neurobiological account of how this learning occurs. Here, in a functional magnetic resonance imaging (fMRI) study of higher-order aversive conditioning, we describe a key computational strategy that humans use to learn predictions about pain. We show that neural activity in the ventral striatum and the anterior insula displays a marked correspondence to the signals for sequential learning predicted by temporal difference models. This result reveals a flexible aversive learning process ideally suited to the changing and uncertain nature of real-world environments. Taken with existing data on reward learning, our results suggest a critical role for the ventral striatum in integrating complex appetitive and aversive predictions to coordinate behaviour.
Resumo:
This paper describes a novel approach to the analysis of supply and demand of water in California. A stochastic model is developed to assess the future supply of and demand for water resources in California. The results are presented in the form of a Sankey diagram where present and stochastically-varying future fluxes of water in California and its sub-regions are traced from source to services by mapping the various transformations of water from when it is first made available for use, through its treatment, recycling and reuse, to its eventual loss in a variety of sinks. This helps to highlight the connections of water with energy and land resources, including the amount of energy used to pump and treat water, the amount of water used for energy production, and the land resources that create a water demand to produce crops for food. By mapping water in this way, policy-makers can more easily understand the competing uses of water, through the identification of the services it delivers (e.g. sanitation, food production, landscaping), the potential opportunities for improving themanagement of the resource and the connections with other resources which are often overlooked in a traditional sector-based management strategy. This paper focuses on a Sankey diagram for water, but the ultimate aim is the visualisation of linked resource futures through inter-connected Sankey diagrams for energy, land and water, tracking changes from the basic resources for all three, their transformations, and the final services they provide.