935 resultados para TRANSIENT ABSORPTION
Resumo:
The optical and luminescence properties of CaI2 and NaCl doped with divalent thulium are reported for solar energy applications. These halides strongly absorb solar light from the UV up to 900 nm due to the intense Tm2+ 4f13→4f125d1 electronic transitions. Absorption is followed by emission of 1140 nm light due to the 2F5/2→2F7/2 transition of the 4f13 configuration that can be efficiently converted to electric power by thin film CuInSe2 (CIS) solar cells. Because of a negligible spectral overlap between absorption and emission spectra, a luminescent solar concentrator (LSC) based on these black luminescent materials would not suffer from self-absorption losses. The Tm2+ doped halides may therefore lead to efficient semi-transparent power generating windows that absorb solar light over the whole visible spectrum. It will be shown that the power efficiency of the Tm2+ based LSCs can be up to four times higher compared to LSCs based on organic dyes or quantum dots.
Resumo:
Femtosecond Raman rotational coherence spectroscopy (RCS) detected by degenerate four-wave mixing is a background-free method that allows to determine accurate gas-phase rotational constants of non-polar molecules. Raman RCS has so far mostly been applied to the regular coherence patterns of symmetric-top molecules, while its application to nonpolar asymmetric tops has been hampered by the large number of RCS transient types, the resulting variability of the RCS patterns, and the 10³–10⁴ times larger computational effort to simulate and fit rotational Raman RCS transients. We present the rotational Raman RCS spectra of the nonpolar asymmetric top 1,4-difluorobenzene (para-difluorobenzene, p-DFB) measured in a pulsed Ar supersonic jet and in a gas cell over delay times up to ~2.5 ns. p-DFB exhibits rotational Raman transitions with ΔJ = 0, 1, 2 and ΔK = 0, 2, leading to the observation of J −, K −, A −, and C–type transients, as well as a novel transient (S–type) that has not been characterized so far. The jet and gas cell RCS measurements were fully analyzed and yield the ground-state (v = 0) rotational constants Aₒ = 5637.68(20) MHz, Bₒ = 1428.23(37) MHz, and Cₒ = 1138.90(48) MHz (1σ uncertainties). Combining the Aₒ, Bₒ, and Cₒ constants with coupled-cluster with single-, double- and perturbatively corrected triple-excitation calculations using large basis sets allows to determine the semi-experimental equilibrium bond lengths rₑ(C₁–C₂) = 1.3849(4) Å, rₑ(C₂–C³) = 1.3917(4) Å, rₑ(C–F) = 1.3422(3) Å, and rₑ(C₂–H₂) = 1.0791(5) Å.
Resumo:
BACKGROUND A recessive inherited form of lamellar ichthyosis is well recognized in golden retrievers. In this breed, young puppies demonstrate a self-limiting scaling disorder which is commonly recognized by breeders, who use the term "milk crust" to describe this syndrome. HYPOTHESIS/OBJECTIVES To determine whether "milk crust" is a new keratinization disorder or a self-limiting form of golden retriever ichthyosis. ANIMALS A total of 179 golden retriever dogs (21 dams and 158 puppies) were examined. METHODS Dermatological examination and assessment of the patatin-like phospholipase-1 (PNPLA1) genotype by PCR testing of buccal mucosal swabs. Skin biopsies from one affected puppy were evaluated for histopathological abnormalities. RESULTS Forty-five of 158 (28%) puppies exhibited scaling at 8 weeks of age; 113 of 158 (72%) were dermatologically normal. Of 144 analysed samples, 40 of 144 (28%) puppies demonstrated a homozygous mutation of the PNPLA1 genotype [of which, 36 of 40 (90%) had signs of scaling], 77 of 144 (53%) demonstrated a heterozygous mutation and 27 of 144 (19%) were a normal wild-type. In six of 17 (35%) dams, a homozygous mutation of the PNPLA1 genotype was found, eight of 17 (47%) demonstrated a heterozygous mutation and three of 17 (18%) were normal wild-type. Dams with a homozygous mutation were clinically unaffected. A 1 year follow-up revealed that 23 of 28 (82%) puppies affected with this syndrome failed to develop typical signs of ichthyosis. In five of 28 (18%) dogs there was persistence of mild scaling. CONCLUSIONS AND CLINICAL IMPORTANCE We hypothesize that the clinical syndrome termed "milk crust" could represent a transient form of golden retriever ichthyosis. Remission is not fully linked to PNPLA1 genotype, suggesting that unknown factors may contribute to the clinical disease.
Resumo:
BACKGROUND The presence of prodromal transient ischemic attacks (TIAs) has been associated with a favorable outcome in anterior circulation stroke. We aimed to determine the association between prodromal TIAs or minor stroke and outcomes at 1 month, in the Basilar Artery International Cooperation Study, a registry of patients presenting with an acute symptomatic and radiologically confirmed basilar artery occlusion. METHODS A total of 619 patients were enrolled in the registry. Information on prodromal TIAs was available for 517 patients and on prodromal stroke for 487 patients. We calculated risk ratios and corresponding 95% confidence intervals (CIs) for poor clinical outcome (modified Rankin Scale score ≥4) according to the variables of interest. RESULTS Prodromal minor stroke was associated with poor outcome (crude risk ratio [cRR], 1.26; 95% CI, 1.12-1.42), but TIAs were not (cRR, .93; 95% CI, .79-1.09). These associations remained essentially the same after adjustment for confounding variables. CONCLUSIONS Prodromal minor stroke was associated with an unfavorable outcome in patients with basilar artery occlusion, whereas prodromal TIA was not.
Resumo:
In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.