988 resultados para TH


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel diamine, 1,4-bis [3-oxy-(N-aminophthalimide)] benzene (BOAPIB), was synthesized from 1,4-bis [3-oxy-(N-phenylphthalimide)] benzene and hydrazine. Its structure was determined via IR, H-1 NMR, and elemental analysis. A series of five-member ring, hydrazine-based polyimides were prepared from this diamine and various aromatic dianhydrides via one-step polycondensation in p-chlorophenol. The inherent viscosities of these polyimides were in the range of 0.17-0.61 dL/g. These polymers were soluble in polar aprotic solvents and phenols at room temperature. Thermogravimetric analysis (TGA) showed that the 5% weight-loss temperatures of the polyimides were near 450 degrees C in air and 500 degrees C in nitrogen. Dynamic mechanical thermal analysis (DMTA) indicated that the glass-transition temperatures (T(g)s) of these polymers were in the range of 265-360 degrees C. The wide-angle X-ray diffraction showed that all the polyimides were amorphous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile and practical one-pot synthesis of beta-oxo thioamides from beta-oxo amides has been developed. By treatment with isothiocyanates in ethanol in the presence of potassium carbonate, a series of beta-oxo amides was converted, under reflux, in high yields into the corresponding beta-oxo thioamides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Ionic liquids (ILs) as environmentally benign solvents have been widely studied in the application of solvent extraction. However, few applications have been successfully industrialized because of the difficult stripping of metal ions or the loss of components of the ILs. More work needs to be done to investigate the extraction behaviour of IL-based extraction systems. In this work, the extraction behaviour of Ce(IV), Th(IV) and some trivalent rare earth (RE) nitrates by di(2-ethylhexyl) 2-ethylhexylphosphonate (DEHEHP) in the IL, 1-methyl-3-octylimidazolium hexafluorophosphate ([C(8)mim]PF6), was investigated and compared with that in the n-heptane system. In particular, the effect of F(I) on the extraction mechanism for Ce(IV) and its separation from Th(IV) was investigated. Otherwise, the recovery efficiency of Ce(IV) and F(I) from a practical bastnasite leach liquor was examined using IL based extraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemistry-based detection methods hold great potential towards development of hand-held nucleic-acid analyses instruments. In this work, we demonstrate the implementation of in situ electrochemical (EC) detection method in a microfluidic flow-through EC-qPCR (FTEC-qPCR) device, where both the amplification of the target nucleic-acid sequence and subsequent EC detection of the PCR amplicon are realized simultaneously at selected PCR cycles in the same device. The FTEC-qPCR device utilizes methylene blue (MB), an electroactive DNA intercalator, for electrochemical signal measurements in the presence of PCR reagent components. Our EC detection method is advantageous, when compared to other existing EC methods for PCR amplicon analysis, since FTEC-qPCR does not require probe-modified electrodes, or asymmetric PCR, or solid-phase PCR. Key technical issues related to surface passivation, electrochemical measurement, PCR inhibition by metal electrode, bubble-free PCR, were investigated. By controlling the concentration of MB and the exposure of PCR mixture to the bare metal electrode, we successfully demonstrated electrochemical measurement of MB in solution-phase, symmetric PCR by amplifying a fragment of lambda phage DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a new promoter, tetrasulfophthalocyanine (FeTSPc), one kind of environmental friendly material, was found to be very effective in both inhibiting self-poisoning and improving the intrinsic catalysis activity, consequently enhancing the electro-oxidation current during the electro-oxidation of formic acid. The cyclic voltammograms test showed that the formic acid oxidation peak current density has been increased about 10 times compared with that of the Pt electrode without FeTSPc. The electrochemical double potential step chronoamperometry measurements revealed that the apparent activity energy decreases from 20.64 kJ mol(-1) to 17.38 kJ mol(-1) after Pt electrode promoted by FeTSPc. The promoting effect of FeTSPc may be owed to the specific structure and abundant electrons of FeTSPc resulting in both the steric hindrance of the formation of poisoning species (CO) and intrinsic kinetic enhancement. In the single cell test, the performance of DFAFC increased from 80 mW cm(-2) mg(-1) (Pt) to 130 mW cm(-2) mg(-1) after the anode electrode adsorbed FeTSPc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) of chitosan and phosphotungstic acid have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Phosphotungstic acid can be fixed within PECs membranes through strong electrostatic interactions, which avoids the decrease of conductivity caused by the dissolving of phosphotungstic acid as previously reported. Scanning electron microscopy (SEM) shows that the PECs membranes are homogeneous and dense. Fourier transform infrared spectroscopy (FTIR) demonstrates that hydrogen bonding is formed between chitosan and phosphotungstic acid. Thermogravimetric analysis (TGA) shows that the PECs membranes have good thermal stability up to 210 degrees C. The PECs membranes exhibit good swelling properties and low methanol permeability (P, 3.3 x 10(-7) cm(2) s(-1)). Proton conductivity (sigma) of the PECs membranes increases at elevated temperature, reaching the value of 0.024 S cm(-1) at 80 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heteropolyanions of tungstophosphoric acid (PWA) have been successfully hybridized with carbon nanotubes (CNTs) by a severe mechanical milling. The obtained hybrid is electroactive for hydrogen evolution (HE) at potentials as positive as -0.16 V vs. Ag/AgCl in 0.2 M HClO4 aqueous solution and its electrocatalysis is up to the level of Pt/CNTs (20 wt% Pt) for HE, indicating a vigorous alternative to Pt group metals. The HE mechanism of the hybrid was also studied and it was found that the tungsten oxycarbides are the electroactive components for HE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new electrocatalysis of carbon materials for oxygen reduction reaction (ORR) on Pt/C catalysts was discovered. It was found that there exist two kinds of electroactive sites on these supports of carbon materials, which can effectively electrocatalyze the reduction of peroxide intermediated from oxygen reduction on Pt, as this provides continuous driving force to move the equilibrium toward the production of peroxide from ORR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, five Pt3Sn1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt3Sn1P2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt3Sn1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm(-2) that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is reported for the first time that the slow electrochemical kinetics process for the electro-oxidation of ethanol can be promoted by changing the electrochemical environment. The electro-oxidation of ethanol at a Pt electrode in the presence of Eu3+ cations was studied and an enhancement effect was exhibited. Cyclic voltammetry experiment results showed that the peak current density for the electro-oxidation of ethanol was increased in the presence of EU3+ in the ethanol solution. A preliminary discussion of the mechanism of the enhancement effect is given. This is based on a CO stripping experiment, which shows that either the onset potential or the peak potential of CO oxidation is shifted negatively after adding Eu3+ to the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A newfangled direct electrochemistry behavior of Cytochrome c (Cyt c) was found on glassy carbon (GC) electrode modified with the silicon dioxide (SiO2) nanoparticles by physical adsorption. A pair of stable and well-defined redox peaks of Cyt c ' quasi-reversible electrochemical reaction were obtained with a heterogeneous electron transfer rate constant of 1.66 x 10(-3) cm/s and a formal potential of 0.069 V (vs. Ag/AgCl) (0.263 V versus NHE) in 0.1 mol/L pH 6.8 PBS. Both the size and the amount of SiO2 nanoparticles could influence the electron transfer between Cyt c and the electrode. Electrostatic interaction which is between the negative nanoparticle surface and positively charged amino acid residues on the Cyt c surface is of importance for the stability and reproducibility toward the direct electron transfer of Cyt c. It is suggested that the modification of SiO2 nanoparticles proposes a novel approach to realize the direct electrochemistry of proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3,3-Dichloro-N,N'-biphthalimide (3,3'-DCBPI), 3,4'-dichloro-N,N'-biphthalimide (3,4'-DCBPI), and 4,4'-dichloro-N,N'X-biphthalimide (4,4'-DCBPI) were synthesized from 3- or 4-chlorophthalic anhydrides and hydrazine in glacial acetic acid. The yield of 3,3'-DCBPI (90%) was much higher than that of 4,4'-DCBPI (33%) because of the better stability of the intermediate, 3-chloro-N-aminophthalimide, and 3,3'-DCBPI. A series of hydrazine-based polyimides were prepared from isomeric DCBPIs and 4,4-thiobisbenzenethiol (TBBT) in N,N-dimethylacetamide in the presence of tributylamine. Inherent viscosity of these polymers was in the range of 0.51-0.69 dL/g in 1-methyl-2-pyrrolidinone (NMP) at 30 degrees C. These polyimides were soluble in 1,1,2,2-terachloroethane, NMP, and phenols. The 5% weight-loss temperatures (T(g)s) of the polymers were near 450 degrees C in N-2. Their glass-transition temperatures (T(g)s) determined by dynamic mechanical thermal analysis and differential scanning calorimetry increased according to the order of polyimides based on 4,4'-DCBPI, 3,4'-DCBPI, and 3,3'-DCBPI. The hydrolytic stability of these polymers was measured under acid, basic, and neutral conditions and the results indicated that the order was 3,3'-DCBPI/TBBT > 3,4'-DCBPI/TBBT > 4,4'-DCBPI/TBBT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Au (Au/C) catalyst for the cathodic catalyst in a direct formic acid fuel cell (DFAFC) was prepared using a polyvinyl alcohol (PVA) protection method. The results indicated that for oxygen reduction, the electrocatalytic activity of the Au/C catalyst prepared with the PVA protection method is much better than that of a Au/C catalyst prepared with the pre-precipitation method. This is due to the small average size and low relative crystallinity of the An particles in the Au/C catalyst prepared by the PVA protection method, compared to that of the Au/C catalyst prepared by the pre-precipitation method, illustrating that the average size and the relative crystallinity of the ALL particles has an effect on the electrocatalytic activity of the Au/C catalyst for oxygen reduction. In addition, because An has no electrocatalytic activity for the oxidation of formic acid, the Au/C catalyst possesses a high formic acid tolerance. After the electrocatalytic activity of the Au/C catalyst for the oxygen reduction is improved, it is suitable to be used as the cathodic catalyst in DFAFC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct methanol fuel cell (DMFC) has attracted wide attention due to its many advantages. However, its practical application is limited by the low electrocatalytic activity of the anodic Pt/C catalyst usually used for the methanol oxidation. In this paper, in order to increase the electrocatalytic performance of the Pt/C catalyst for the methanol oxidation, the black carbon, usually used as the supporter, was pretreated with CO2, air, HNO3 or H2O2. The cyclic voltarnmetric results indicated that the current densities of the anodic peak of methanol oxidation at the Pt/C catalysts with the black carbon pretreated with CO2,air, HN03, H202 and untreated black carbon were 39, 33, 32, 20 and 18 mA center dot cm(-2), respectively, illustrating that among the above five kinds of the Pt/C catalysts, the Pt/C catalyst with the black carbon pretreated with CO2 shows the best electrocatalytic activity and stability for the methanol oxidation. Its main reason is that the CO2 pretreatment could reduce the content of the oxygen-containing groups on the surface of the black carbon and increase the content of graphite in the black carbon, leading to the low resistance of the black carbon and the increase in the dispersion extent of the Pt particles in the Pt/C catalyst.