988 resultados para T lymphocyte subpopulation
Resumo:
Background In angioimmunoblastic T-cell lymphoma, symptoms linked to B-lymphocyte activation are common, and variable numbers of CD20(+) large B-blasts, often infected by Epstein-Barr virus, are found in tumor tissues. We postulated that the disruption of putative B-T interactions and/or depletion of the Epstein-Barr virus reservoir by an anti-CD20 monoclonal antibody (rituximab) could improve the clinical outcome produced by conventional chemotherapy. DESIGN AND METHODS: Twenty-five newly diagnosed patients were treated, in a phase II study, with eight cycles of rituximab + chemotherapy (R-CHOP21). Tumor infiltration, B-blasts and Epstein-Barr virus status in tumor tissue and peripheral blood were fully characterized at diagnosis and were correlated with clinical outcome. RESULTS: A complete response rate of 44% (95% CI, 24% to 65%) was observed. With a median follow-up of 24 months, the 2-year progression-free survival rate was 42% (95% CI, 22% to 61%) and overall survival rate was 62% (95% CI, 40% to 78%). The presence of Epstein-Barr virus DNA in peripheral blood mononuclear cells (14/21 patients) correlated with Epstein-Barr virus score in lymph nodes (P<0.004) and the detection of circulating tumor cells (P=0.0019). Despite peripheral Epstein-Barr virus clearance after treatment, the viral load at diagnosis (>100 copy/μg DNA) was associated with shorter progression-free survival (P=0.06). Conclusions We report here the results of the first clinical trial targeting both the neoplastic T cells and the microenvironment-associated CD20(+) B lymphocytes in angioimmunoblastic T-cell lymphoma, showing no clear benefit of adding rituximab to conventional chemotherapy. A strong relationship, not previously described, between circulating Epstein-Barr virus and circulating tumor cells is highlighted.
Resumo:
In studies of the natural history of HIV-1 infection, the time scale of primary interest is the time since infection. Unfortunately, this time is very often unknown for HIV infection and using the follow-up time instead of the time since infection is likely to provide biased results because of onset confounding. Laboratory markers such as the CD4 T-cell count carry important information concerning disease progression and can be used to predict the unknown date of infection. Previous work on this topic has made use of only one CD4 measurement or based the imputation on incident patients only. However, because of considerable intrinsic variability in CD4 levels and because incident cases are different from prevalent cases, back calculation based on only one CD4 determination per person or on characteristics of the incident sub-cohort may provide unreliable results. Therefore, we propose a methodology based on the repeated individual CD4 T-cells marker measurements that use both incident and prevalent cases to impute the unknown date of infection. Our approach uses joint modelling of the time since infection, the CD4 time path and the drop-out process. This methodology has been applied to estimate the CD4 slope and impute the unknown date of infection in HIV patients from the Swiss HIV Cohort Study. A procedure based on the comparison of different slope estimates is proposed to assess the goodness of fit of the imputation. Results of simulation studies indicated that the imputation procedure worked well, despite the intrinsic high volatility of the CD4 marker.
Resumo:
Superantigens are bacterial or viral products that polyclonally activate T cells bearing certain TCR beta chain variable elements. For instance, Vbeta8+ T cells proliferate in response to staphylococcal enterotoxin B (SEB) in vivo and then undergo Fas- and/or TNF-mediated apoptosis. We have recently shown that apoptotic SEB-reactive T cells express the B cell marker B220. Here we report the identification of a novel subset of CD4+ B220+ T cell blasts that are the precursors of these apoptotic cells in SEB-immunized mice. Moreover, we show that the CD4- CD8- B220+ T cells that accumulate in the lymphoid organs of Fas ligand-defective gld mice stably express a form of the B220 molecule which exhibits biochemical similarities to that expressed by activated wild-type T cells, but is distinct from that displayed on the surface of B cells. Surprisingly, we also find a population of CD4+ B220+ pre-apoptotic T cells in FasL-defective gld mice, arguing that these cells can be generated in a Fas-independent fashion. Collectively, our data support a general model whereby upon activation, T cells up-regulate B220 before undergoing apoptosis. When the apoptotic mechanisms are defective, T cells presumably down-regulate their coreceptor molecules but retain expression of B220 as they accumulate in lymphoid organs.
Resumo:
The relationship between the binding of Vicia villosa (VV) lectin and the expression of cytolytic function in T lymphoblasts has been investigated using flow cytofluorometric techniques. Spleen cells activated in vitro in 5-day mixed leukocyte cultures (MLC) were incubated sequentially with VV, rabbit anti-V antiserum, and fluoresceinated sheep anti-rabbit IgG. When these stained MLC cells were passed on a flow cytometer gated to exclude nonviable cells and small lymphocytes, a single heterogeneous peak of fluorescence was seen, as compared to control MLC cells that had not been incubated with VV. Fluorescence of lymphoblasts was dependent upon lectin dose and was eliminated when staining was performed in the presence of N-acetyl-D-galactosamine, the appropriate competitive sugar for VV. T cell blast populations activated against H-2, Mls, or parasite antigens all had comparable levels of fluorescence after staining with VV, although the cytolytic activity of these cells varied widely. Furthermore, when MLC lymphoblasts binding large or small amounts of VV were sorted on the basis of their relative fluorescence intensity and tested for cytolytic function, no appreciable difference in activity between the 2 populations was observed. These results are inconsistent with the hypothesis that VV binds selectively to cytolytic T lymphocytes.
Resumo:
Wolves in Italy strongly declined in the past and were confined south of the Alps since the turn of the last century, reduced in the 1970s to approximately 100 individuals surviving in two fragmented subpopulations in the central-southern Apennines. The Italian wolves are presently expanding in the Apennines, and started to recolonize the western Alps in Italy, France and Switzerland about 16 years ago. In this study, we used a population genetic approach to elucidate some aspects of the wolf recolonization process. DNA extracted from 3068 tissue and scat samples collected in the Apennines (the source populations) and in the Alps (the colony), were genotyped at 12 microsatellite loci aiming to assess (i) the strength of the bottleneck and founder effects during the onset of colonization; (ii) the rates of gene flow between source and colony; and (iii) the minimum number of colonizers that are needed to explain the genetic variability observed in the colony. We identified a total of 435 distinct wolf genotypes, which showed that wolves in the Alps: (i) have significantly lower genetic diversity (heterozygosity, allelic richness, number of private alleles) than wolves in the Apennines; (ii) are genetically distinct using pairwise F(ST) values, population assignment test and Bayesian clustering; (iii) are not in genetic equilibrium (significant bottleneck test). Spatial autocorrelations are significant among samples separated up to c. 230 km, roughly correspondent to the apparent gap in permanent wolf presence between the Alps and north Apennines. The estimated number of first-generation migrants indicates that migration has been unidirectional and male-biased, from the Apennines to the Alps, and that wolves in southern Italy did not contribute to the Alpine population. These results suggest that: (i) the Alps were colonized by a few long-range migrating wolves originating in the north Apennine subpopulation; (ii) during the colonization process there has been a moderate bottleneck; and (iii) gene flow between sources and colonies was moderate (corresponding to 1.25-2.50 wolves per generation), despite high potential for dispersal. Bottleneck simulations showed that a total of c. 8-16 effective founders are needed to explain the genetic diversity observed in the Alps. Levels of genetic diversity in the expanding Alpine wolf population, and the permanence of genetic structuring, will depend on the future rates of gene flow among distinct wolf subpopulation fragments.
Resumo:
OBJECTIVE: To determine in chimpanzees if candidate HIV-1 subunit protein vaccines were capable of eliciting long-lasting T-cell memory responses in the absence of viral infection, and to determine the specific characteristics of these responses. DESIGN: A longitudinal study of cell-mediated immune responses induced in three chimpanzees following immunization with subunit envelope glycoproteins of either HIV-1 or herpes simplex virus (HSV)-2. Following these pre-clinical observations, four human volunteers who had been immunized 7 years previously with the same HIV-1 vaccine candidate donated blood for assessment of immune responses. METHODS: Responses were monitored by protein and peptide based ELISpot assays, lymphocyte proliferation, and intracellular cytokine staining. Humoral responses were assessed by enzyme-linked immunosorbent assay and virus neutralization assays. RESULTS: Although antigen (Ag)-specific CD4 T-cell responses persisted for at least 5 years in chimpanzees, CD8 T-cell responses were discordant and declined within 2 years. Detailed cellular analyses revealed that strong Th1 in addition to Th2 type responses were induced by AS2/gp120 and persisted, whereas CD8 T-cell memory declined in peripheral blood. The specificity of both Th and cytotoxic T-lymphocyte responses revealed that the majority of responses were directed to conserved epitopes. The remarkable persistence of Ag-specific CD4 T-cell memory was characterized as a population of the CD45RA-CD62L-CCR7- "effector phenotype" producing the cytokines IFNgamma, IL-2 and IL-4 upon epitope-specific recognition. Importantly, results in chimpanzees were confirmed in peripheral blood of one of four human volunteers studied more than 7 years after immunization. CONCLUSION: These studies demonstrate that epitope-specific Th1 and Th2 cytokine-dependent Th responses can be induced and maintained for longer than 5 years by immunization with subunit proteins of HIV-1.
Resumo:
PURPOSE OF REVIEW: Brain metastases are a common clinical problem, and only limited treatment options exist. We review recent advances in medical brain metastasis research with a focus on the most common tumor types associated with secondary brain colonization: melanoma, breast cancer and lung cancer. We speculate on opportunities for drug development in patients with brain metastases, both as a treatment of established disease and as an adjuvant and prophylactic strategy. RECENT FINDINGS: BRAF inhibitors and the immunomodulatory anticytotoxic T-lymphocyte-associated antigen 4 antibody ipilimumab have shown clinically meaningful activity in melanoma patients with brain metastases. In breast cancer, current studies on drug treatment of brain metastases are mainly focusing on human epidermal growth factor receptor 2 targeting agents such as lapatinib. Emerging data seem to implicate a potential role of targeted agents including antiangiogenic compounds, pazopanib, and epithelial growth factor receptor inhibitors for prevention of brain metastasis formation in breast cancer or nonsmall cell lung cancer. SUMMARY: Novel drugs are beginning to enter clinical practice for selected patients with brain metastases. The promising findings from recent studies may fuel more research on brain metastases and their optimal drug treatment.
Resumo:
In chronic viral infections, CD8⁺ T cells become functionally deficient and display multiple molecular alterations. In contrast, only little is known of self- and tumor-specific CD8⁺ T cells from mice and humans. Here we determined molecular profiles of tumor-specific CD8⁺ T cells from melanoma patients. In peripheral blood from patients vaccinated with CpG and the melanoma antigen Melan-A/MART-1 peptide, we found functional effector T cell populations, with only small but nevertheless significant differences in T cells specific for persistent herpesviruses (EBV and CMV). In contrast, Melan-A/MART-1-specific T cells isolated from metastases from patients with melanoma expressed a large variety of genes associated with T cell exhaustion. The identified exhaustion profile revealed extended molecular alterations. Our data demonstrate a remarkable coexistence of effector cells in circulation and exhausted cells in the tumor environment. Functional T cell impairment is mediated by inhibitory receptors and further molecular pathways, which represent potential targets for cancer therapy.
Promoter IV of the class II transactivator gene is essential for positive selection of CD4+ T cells.
Resumo:
Major histocompatibility complex class II (MHCII) expression is regulated by the transcriptional coactivator CIITA. Positive selection of CD4(+) T cells is abrogated in mice lacking one of the promoters (pIV) of the Mhc2ta gene. This is entirely due to the absence of MHCII expression in thymic epithelia, as demonstrated by bone marrow transfer experiments between wild-type and pIV(-/-) mice. Medullary thymic epithelial cells (mTECs) are also MHCII(-) in pIV(-/-) mice. Bone marrow-derived, professional antigen-presenting cells (APCs) retain normal MHCII expression in pIV(-/-) mice, including those believed to mediate negative selection in the thymic medulla. Endogenous retroviruses thus retain their ability to sustain negative selection of the residual CD4(+) thymocytes in pIV(-/-) mice. Interestingly, the passive acquisition of MHCII molecules by thymocytes is abrogated in pIV(-/-) mice. This identifies thymic epithelial cells as the source of this passive transfer. In peripheral lymphoid organs, the CD4(+) T-cell population of pIV(-/-) mice is quantitatively and qualitatively comparable to that of MHCII-deficient mice. It comprises a high proportion of CD1-restricted natural killer T cells, which results in a bias of the V beta repertoire of the residual CD4(+) T-cell population. We have also addressed the identity of the signal that sustains pIV expression in cortical epithelia. We found that the Jak/STAT pathways activated by the common gamma chain (CD132) or common beta chain (CDw131) cytokine receptors are not required for MHCII expression in thymic cortical epithelia.
Resumo:
Purpose: Letrozole (LET) has recently been shown to be superior to tamoxifen for postmenopausal patients (pts). In addition, LET radiosensitizes breast cancer cells in vitro. We conducted a phase II randomized study to evaluate concurrent and sequential radiotherapy (RT)-LET in the adjuvant setting. We present here clinical results with a minimum follow-up of 24 months. Patients and Methods: Postmenopausal pts with early-stage breast cancer were randomized after conservative surgery to either: A) concurrent RT-LET (LET started 3 weeks before the first day of RT) or B) sequential RT-LET (LET started 3 weeks after the end of RT). Whole breast RT was delivered to a total dose of 50 Gy. A 10-16 Gy boost was allowed according to age and pathological prognostic factors. Pts were stratified by center, adjuvant chemotherapy, boost, and radiation-induced CD8 apoptosis (RILA). RILA was performed before RT as previously published (Ozsahin et al. Clin Cancer Res, 2005). An independent monitoring committee reviewed individual safety data. Skin toxicities were evaluated by two different clinicians at each medical visit (CTCAE v3.0). Lung CT-scan and functional pulmonary tests were performed regularly. DNA samples were screened for SNPs in candidate genes as recently published (Azria et al., Clin Cancer Res, 2008). Results: A total of 150 pts were randomized between 01/05 and 02/07. Median follow-up is 26 months (range, 3-40 months). No statistical differences were identified between the two arms in terms of mean age; initial TNM; median surgical bed volume; post surgical breast volume. Chemotherapy and RT boost were delivered in 19% and 38% of pts, respectively. Nodes received 50 Gy in 23% of patients without differences between both arms. During RT and within the first 6 weeks after RT, 10 patients (6.7%) presented grade 3 acute skin dermatitis during RT but no differences were observed between both arms (4 and 6 patients in arm A and B, respectively). At 26 month of follow-up, grade 2 and more radiation-induced subcutaneous fibrosis (RISCF) was present in 4 patients (3%) without any difference between arm A (n = 2) and B (n = 2), p=0.93. In both arms, all patients that presented a RICSF had a RILA lower than 16%. Sensitivity and specificity were 100% and 39%, respectively.No acute lung toxicities were observed and quality of life was good to excellent for all patients.SNPs analyses are still on-going (Pr Rosenstein, NY). Conclusion: Acute and early late grade 2 dermatitis were similar in both arms. The only factor that influenced RISCF was a low radiation-induced lymphocyte apoptosis yield. We confirmed prospectively the capacity of RILA for identifying hypersensitive patients to radiation. Indeed, patients with RILA superior to 16% did not present late effects to radiation and confirmed the first prospective trial we published in 2005 (Ozsahin et al., Clin Cancer Res).
Resumo:
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA(694-702) peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA(694-702) binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA(694-702) peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.
Resumo:
Activating and inhibitory NK receptors regulate the development and effector functions of NK cells via their ITAM and ITIM motifs, which recruit protein tyrosine kinases and phosphatases, respectively. In the T cell lineage, inhibitory Ly49 receptors are expressed by a subset of activated T cells and by CD1d-restricted NKT cells, but virtually no expression of activating Ly49 receptors is observed. Using mice transgenic for the activating receptor Ly49D and its associated ITAM signaling DAP12 chain, we show in this article that Ly49D-mediated ITAM signaling in immature thymocytes impairs development due to a block in maturation from the double negative (DN) to double positive (DP) stages. A large proportion of Ly49D/DAP12 transgenic thymocytes were able to bypass the pre-TCR checkpoint at the DN3 stage, leading to the appearance of unusual populations of DN4 and DP cells that lacked expression of intracellular (ic) TCRβ-chain. High levels of CD5 were expressed on ic TCRβ(-) DN and DP thymocytes from Ly49D/DAP12 transgenic mice, further suggesting that Ly49D-mediated ITAM signaling mimics physiological ITAM signaling via the pre-TCR. We also observed unusual ic TCRβ(-) single positive thymocytes with an immature CD24(high) phenotype that were not found in the periphery. Importantly, thymocyte development was completely rescued by expression of an Ly49A transgene in Ly49D/DAP12 transgenic mice, indicating that Ly49A-mediated ITIM signaling can fully counteract ITAM signaling via Ly49D/DAP12. Collectively, our data indicate that inappropriate ITAM signaling by activating NK receptors on immature thymocytes can subvert T cell development by bypassing the pre-TCR checkpoint.
Resumo:
Protein C3 of the complement system is known for its role in the nonspecific immune response. Covalent binding of C3b to antigen upon complement activation also plays a significant role in specific T cell immune response. C3b-antigen complexes can bind to complement receptors on the antigen-presenting cell, and the C3b antigen link (most often an ester link) remains fairly stable inside the cells. In this study, IgG1,kappa and IgG2a,kappa murine monoclonal antibodies (mAb) were used as antigens; covalent complexes between mAb and C3b were produced and purified in vitro from purified proteins; human B cell lines and T cell clones were raised from tumor patients who received mAb injections for cancer therapy or diagnosis. Recognition of epitopes of these mAb by T cell clones when the mAb were processed alone or bound to C3b was compared. IgG or IgG-C3b complexes presented by B cell lines were able to stimulate proliferation of kappa light chain-specific T cell clones at similar concentrations. In contrast, IgG-C3b complex recognition by heavy chain-specific T cell clones required 100-fold less IgG-C3b than uncomplexed IgG. As C3b was shown to be covalently bound only to the IgG heavy chains in the complexes, C3b chaperoning is restricted to only the IgG heavy chain and selectively influences intracellular steps of IgG heavy chain processing. This differential modulation of C3b suggests an early dissociation of IgG heavy and light chains in antigen-presenting cells.
Resumo:
PURPOSE: To centrally assess estrogen receptor (ER) and progesterone receptor (PgR) levels by immunohistochemistry and investigate their predictive value for benefit of chemo-endocrine compared with endocrine adjuvant therapy alone in two randomized clinical trials for node-negative breast cancer. PATIENTS AND METHODS: International Breast Cancer Study Group Trial VIII compared cyclophosphamide, methotrexate, and fluorouracil (CMF) chemotherapy for 6 cycles followed by endocrine therapy with goserelin with either modality alone in pre- and perimenopausal patients. Trial IX compared three cycles of CMF followed by tamoxifen for 5 years versus tamoxifen alone in postmenopausal patients. Central Pathology Office reviewed 883 (83%) of 1,063 patients on Trial VIII and 1,365 (82%) of 1,669 on Trial IX and determined ER and PgR by immunohistochemistry. Disease-free survival (DFS) was compared across the spectrum of expression of each receptor using the Subpopulation Treatment Effect Pattern Plot methodology. RESULTS: Both receptors displayed a bimodal distribution, with substantial proportions showing no staining (receptor absent) and most of the remainder showing a high percentage of stained cells. Chemo-endocrine therapy yielded DFS superior to endocrine therapy alone for patients with receptor-absent tumors, and in some cases also for those with low levels of receptor expression. Among patients with ER-expressing tumors, additional prediction of benefit was suggested in absent or low PgR in Trial VIII but not in Trial IX. CONCLUSION: Low levels of ER and PgR are predictive of the benefit of adding chemotherapy to endocrine therapy. Low PgR may add further prediction among pre- and perimenopausal but not postmenopausal patients whose tumors express ER.
Resumo:
Expression of the cancer/germ-line antigen NY-ESO-1 by tumors elicits spontaneous humoral and cellular immune responses in some cancer patients. Development of vaccines capable of stimulating such comprehensive immune responses is desirable. We have produced recombinant lentivectors directing the intracellular synthesis of NY-ESO-1 (rLV/ESO) and have analyzed the in vivo immune response elicited by this vector. Single injection of rLV/ESO into HLA-A2-transgenic mice elicited long-lasting B and T cell responses against NY-ESO-1. CD8+ T cells against the HLA-A2-restricted peptide NY-ESO-1(157-165) were readily detectable ex vivo and showed restricted TCR Vbeta usage. Moreover, rLV/ESO elicited a far greater anti-NY-ESO-1(157-165) CD8+ T cell response than peptide- or protein-based vaccines. Anti-NY-ESO-1 antibodies were rapidly induced after immunization and their detection preceded that of the antigen-specific CD8+ T cells. The rLV/ESO also induced CD4+ T cells. These cells played an essential role as their depletion completely abrogated B cell and CD8+ T cell responses against NY-ESO-1. The induced CD4+ T cells were primarily directed against a single NY-ESO-1 epitope spanning amino acids 81-100. Altogether, our study shows that rLV/ESO induces potent and comprehensive immune responses in vivo.