977 resultados para T Cell Antigen Receptor
Resumo:
Transgenic BALB/c mice that express intrathyroidal human thyroid stimulating hormone receptor (TSHR) A-subunit, unlike wild-type (WT) littermates, develop thyroid lymphocytic infiltration and spreading to other thyroid autoantigens after T regulatory cell (Treg) depletion and immunization with human thyrotropin receptor (hTSHR) adenovirus. To determine if this process involves intramolecular epitope spreading, we studied antibody and T cell recognition of TSHR ectodomain peptides (A–Z). In transgenic and WT mice, regardless of Treg depletion, TSHR antibodies bound predominantly to N-terminal peptide A and much less to a few downstream peptides. After Treg depletion, splenocytes from WT mice responded to peptides C, D and J (all in the A-subunit), but transgenic splenocytes recognized only peptide D. Because CD4+ T cells are critical for thyroid lymphocytic infiltration, amino acid sequences of these peptides were examined for in silico binding to BALB/c major histocompatibility complex class II (IA–d). High affinity subsequences (inhibitory concentration of 50% < 50 nm) are present in peptides C and D (not J) of the hTSHR and mouse TSHR equivalents. These data probably explain why transgenic splenocytes do not recognize peptide J. Mouse TSHR mRNA levels are comparable in transgenic and WT thyroids, but only transgenics have human A-subunit mRNA. Transgenic mice can present mouse TSHR and human A-subunit-derived peptides. However, WT mice can present only mouse TSHR, and two to four amino acid species differences may preclude recognition by CD4+ T cells activated by hTSHR-adenovirus. Overall, thyroid lymphocytic infiltration in the transgenic mice is unrelated to epitopic spreading but involves human A-subunit peptides for recognition by T cells activated using the hTSHR.
Resumo:
This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.
Resumo:
To determine whether non-enterobacterial endotoxins, which are likely to constitute the majority of the circulating endotoxin pool, may stimulate coronary artery endothelial cell activation. Interleukin-8 secretion, monocyte adhesion, and E-selectin expression were measured in human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs) challenged in vitro with highly purified endotoxins of common host colonisers Escherichia coli, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Bacteroides fragilis. HCAECs but not HUVECs expressed Toll-like receptor (TLR)-2 and were responsive to non-enterobacterial endotoxins. Transfection of TLR-deficient HEK-293 cells with TLR2 or TLR4/MD2 revealed that while E. coli endotoxin utilised solely TLR4 to signal, the endotoxins, deglycosylated endotoxins (lipid-A), and whole heat-killed bacteria of the other species stimulated TLR2-but not TLR4-dependent cell-signalling. Blockade of TLR2 with neutralizing antibody prevented HCAEC activation by non-enterobacterial endotoxins. Comparison of each endotoxin with E. coli endotoxin in limulus amoebocyte lysate assay revealed that the non-enterobacterial endotoxins are greatly underestimated by this assay, which has been used in all previous studies to estimate plasma endotoxin concentrations. Circulating non-enterobacterial endotoxins may be an underestimated contributor to endothelial activation and atherosclerosis in individuals at risk of increased plasma endotoxin burden.
Resumo:
The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.
Resumo:
This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.
Resumo:
A set of 38 epitopes and 183 non-epitopes, which bind to alleles of the HLA-A3 supertype, was subjected to a combination of comparative molecular similarity indices analysis (CoMSIA) and soft independent modeling of class analogy (SIMCA). During the process of T cell recognition, T cell receptors (TCR) interact with the central section of the bound nonamer peptide; thus only positions 4−8 were considered in the study. The derived model distinguished 82% of the epitopes and 73% of the non-epitopes after cross-validation in five groups. The overall preference from the model is for polar amino acids with high electron density and the ability to form hydrogen bonds. These so-called “aggressive” amino acids are flanked by small-sized residues, which enable such residues to protrude from the binding cleft and take an active role in TCR-mediated T cell recognition. Combinations of “aggressive” and “passive” amino acids in the middle part of epitopes constitute a putative TCR binding motif
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
A prerequisite for vaccine-mediated induction of CD8+ T-cell responses is the targeting of dendritic cell (DC) subsets specifically capable of cross-presenting antigen epitopes to CD8+ T cells. Administration of a number of cationic adjuvants via the intraperitoneal (i.p.) route has been shown to result in strong CD8+ T-cell responses, whereas immunization via e.g. the intramuscular (i.m.) or subcutaneous (s.c.) routes often stimulate weak CD8+ T-cell responses. The hypothesis for this is that self-drainage of the adjuvant/antigen to the lymphoid organs, which takes place upon i.p. immunization, is required for the subsequent activation of cross-presenting lymphoid organ-resident CD8α+ DCs. In contrast, s.c. or i.m. immunization usually results in the formation of a depot at the site of injection (SOI), which hinders the self-drainage and targeting of the vaccine to cross-presenting CD8α+ DCs. We investigated this hypothesis by correlating the biodistribution pattern and the adjuvanticity of the strong CD8+ T-cell inducing liposomal cationic adjuvant formulation 09 (CAF09), which is composed of dimethyldioctadecylammonium bromide/monomycoloyl glycerol liposomes with polyinosinic:polycytidylic acid electrostatically adsorbed to the surface. Biodistribution studies with radiolabeled CAF09 and a surface-adsorbed model antigen [ovalbumin (OVA)] showed that a significantly larger fraction of the vaccine dose localized in the draining lymph nodes (dLNs) and the spleen 6 h after i.p. immunization, as compared to after i.m. immunization. Studies with fluorescently labelled OVA + CAF09 demonstrated a preferential association of OVA + CAF09 to DCs/monocytes, as compared to macrophages and B cells, following i.p. immunization. Administration of OVA + CAF09 via the i.p. route did also result in DC activation, whereas no DC activation could be measured within the same period with unadjuvanted OVA and OVA + CAF09 administered via the s.c. or i.m. routes. In the dLNs, the highest level of activated, cross-presenting CD8α+ DCs was detected at 24 h post immunization, whereas an influx of activated, migrating and cross-presenting CD103+ DCs to the dLNs could be measured after 48 h. This suggests that the CD8α+ DCs are activated by self-draining OVA + CAF09 in the lymphoid organs, whereas the CD103+ DCs are stimulated by the OVA + CAF09 at the SOI. These results support the hypothesis that the self-drainage of OVA + CAF09 to the draining LNs is required for the activation of CD8α+ DCs, while the migratory CD103+ DCs may play a role in sustaining the subsequent induction of strong CD8+ T-cell responses.
Resumo:
B cell abnormalities contribute to the development and progress of autoimmune disease. Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited to the production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells have other functions potentially relevant to autoimmunity. Such functions include antigen presentation to and activation of T cells, expression of costimulatory molecules and cytokine production. Recently, the ability of B cells to negatively regulate cellular immune responses and inflammation has been described and the concept of “regulatory B cells” has emerged. A variety of cytokines produced by regulatory B cell subsets have been reported with interleukin-10 (IL-10) being the most studied. IL-10-producing regulatory B cells predominantly localize within a rare CD1dhiCD5+ B cell subset in mice and the CD24hiCD27+ B cell subset in adult humans. This specific IL-10-producing subset of regulatory B cells have been named “B10 cells” to highlight that the regulatory function of these rare B cells is primarily mediated by IL-10, and to distinguish them from other regulatory B cell subsets that regulate immune responses through different mechanisms. B10 cells have been studies in a variety of animal models with autoimmune disease and clinical settings of human autoimmunity. There are many unsolved questions related to B10 cells including their surface phenotype, their origin and development in vivo, and their role in autoimmunity.
In Chapter 3 of this dissertation, the role of the B cell receptor (BCR) in B10 cell development is highlighted. First, the BCR repertoire of mouse peritoneal cavity B10 cells is examined by single cell sequencing; peritoneal cavity B10 cells have clonally diverse germline BCRs that are predominantly unmutated. Second, mouse B10 cells are shown to have higher frequencies of λ+ BCRs compared to non-B10 cells which may indicate the involvement of BCR light chain editing early in the process of B10 cell development in vivo. Third, human peripheral blood B10 cells are examined and are also found to express higher frequencies of λ chains compared to non-b10 cells. Therefore, B10 cell BCRs are clonally diverse and enriched for unmutated germline sequences and λ light chains.
In Chapter 4 of this dissertation, B10 cells are examined in the healthy developing human across the entire age range of infancy, childhood and adolescence, and in a large cohort of children with autoimmunity. The study of B10 cells in the developing human documents a massive transient expansion during middle childhood when up to 30% of blood B cells were competent to produce IL-10. The surface phenotype of pediatric B10 cells was variable and reflective of overall B cell development. B10 cells down-regulated CD4+ T cell interferon-gamma (IFN-γ) production through IL-10-dependent pathways and IFN-γ inhibited whereas interleukin-21 (IL-21) promoted B cell IL-10 competency in vitro. Children with autoimmunity had a contracted B10 cell compartment, along with increased IFN-γ and decreased IL-21 serum levels compared to age-matched healthy controls. The decreased B10 cell frequencies and numbers in children with autoimmunity may be partially explained by the differential regulation of B10 cell development by IFN-γ and IL-21 and alterations in serum cytokine levels. The age-related changes of the B10 cell compartment during normal human development provide new insights into immune tolerance mechanisms involved in inflammation and autoimmunity.
These studies collectively demonstrate that BCR signals are the most important early determinant of B10 cell development in vivo, that human B10 cells are not a surface phenotype defined developmental B cell subset but a functionally defined regulatory B cell subset that regulates CD4+ T IFN-γ production through IL-10-dependent pathways and that human B10 cell development can be regulated by soluble factors in vivo such as the cytokine milieu. The findings of these studies provide new insights into immune tolerance mechanisms involved in human autoimmunity and the potent effects of IL-21 on human B cell IL-10 competence in vitro open new horizons in the development of autologous B10 cell-based therapies as an approach to treat human autoimmune disease in the future.
Resumo:
Prostate Cancer is a disease that primarily affects elderly men. The incidence of prostate cancer has been progressively increasing in the western world over the last two decades. Life expectancy and diet are believed to be the main factors contributing to this increase in prevalence. Prostate cancer is a slowly progressing disorder and patients often live for over 10 years after initially being diagnosed with prostate cancer. However, patients with hormone refractory prostate cancer have a poor prognosis and generally do not survive for longer than 2 or 3 years. Hormone refractory prostate cancer is responsible for over 200,000 deaths each year and current chemotherapeutic regimens are only useful as palliative agents. The long-term survival rate is poor and chemotherapy does not significantly increase this. Cell lines derived from hormone refractory tumours usually display elevated resistance to many cytotoxic drugs. The Fas receptor is a membrane bound protein capable of binding to a ligand called Fas ligand. Engagement of Fas receptor with Fas ligand results in clustering of Fas receptor on the plasma membrane of cells. A number of proteins responsible for initiating apoptosis are recruited to the plasma membrane and are activated in response to elevated local concentrations. This series of events initiates a proteolysis cascade and that culminates in the degradation of structural and enzymatic processes and the repackaging of cellular constituents within membrane bound vesicles that can be endocytosed and recycled by surrounding phagocytic cells. The Fas receptor is believed to be a key mechanism by which immune cells can destroy damaged cells. Consequently, resistance to Fas receptor mediated apoptosis often correlates with tumour progression. It has been reported that prostate cancer cell lines display elevated resistance to Fas receptor mediated apoptosis and this correlates with the stage of tumour from which the cell lines were isolated. JNK, a stress-activated protein kinase, has been implicated both with increased survival and increased apoptosis in prostate cancer. Elevated endogenous JNK activity has been demonstrated to correlate with prostate cancer progression. It has been shown that endogenous JNK activity increases the expression of anti-apoptotic proteins and can increase the resistance of prostate cancer cell lines to chemotherapy. In addition, elevated endogenous JNK activity is required for improved proliferation and transformation of a number of epithelial tumours. However, prolonged JNK activation in response to cytotoxic stimuli can increase the sensitivity of cells to apoptosis. Prolonged JNK activity appears to induce the expression of a separate set of genes responsible for promoting apoptosis. Our group has recently shown that activation of JNK by chemotherapeutic drugs can sensitise DU 145 prostate carcinoma cells to Fas receptor mediated apoptosis. In order toidentify novel targets for treating hormone refractory prostate cancer we have investigated the role of JNK in Fas receptor mediated apoptosis. We have demonstrated that prolonged JNK activation is defective in DU 145 cells in response to Fas receptor activation alone. Co-administering anisomycin, a JNK agonist, greatly enhances the ability of DU 145 cells to undergo apoptosis by increasing the rate of Caspase 8 cleavage. We also investigated the role of endogenous JNK activity in Fas receptor mediated.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Numerous leukocyte populations are essential for pregnancy success. Uterine natural killer (uNK) cells are chief amongst these leukocytes and represent a unique lineage with limited cytotoxicity but abundant angiokine production. They possess a distinct phenotype of activating and inhibitory receptors that recognize major histocompatibility complex (MHC) molecules, such as the killer immunoglobulin like receptors (KIRs; mouse Ly49), and MHC-independent activating receptors, including the aryl hydrocarbon receptor (AHR) and natural cytotoxicity receptor 1 (NCR1). While the roles of MHC-dependent receptors are widely addressed in pregnancy, MHC-independent receptors are relatively unstudied. This thesis investigated the roles of MHC-independent receptors in promotion of mouse pregnancy and characterized early leukocyte interactions in the presence and absence of NCR1. It was hypothesized that loss of MHC-independent receptors impairs uNK cell development resulting in aberrations in leukocyte function and decidual vasculature. Implantation sites from Ahr-/- and Ncr1Gfp/Gfp mice were assessed using whole mount in situ immunohistochemistry (WM-IHC) and histochemical techniques. Leukocyte interactions identified during preliminary WM-IHC studies were confirmed as immune synapses. The novel identification of immune synapses in early mouse pregnancy compelled further examination of leukocyte conjugates in wildtype C57BL/6 and Ncr1Gfp/Gfp mice. In Ahr-/- and Ncr1Gfp/Gfp mice, receptor loss resulted in reduced uNK cell diameters, impaired decidual vasculature, and failures in spiral artery remodeling. Ahr-/- mice had severe fertility deficits whereas Ncr1Gfp/Gfp mice had increased fetal resorption indicating differing receptor requirements in pregnancy success. NCR1 loss primarily affected uNK cell maturation and function as identified by alterations in granule ultrastructure, lytic protein expression, and angiokine production. Leukocyte conjugates were frequent in early C57BL/6 decidua basalis and included uNK cells conjugating first with antigen presenting cells and then with T cells. Overall conjugate formation was reduced in the absence of NCR1, but specific uNK cell conjugations were unaffected by receptor loss. While KIR-MHC interactions are associated with numerous pregnancy complications in humans, the role of other uNK cell receptors are not well characterized. These results illustrate the importance of MHC-independent receptors in uNK cell activation during early pregnancy in mice and encourage further studies of pregnancy complications that may occur independently of maternal KIR-MHC contributions.