936 resultados para System Development
Resumo:
Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO2 levels (control: ~600μatm, pH=8.03; medium: ~1000μatm, pH=7.85; high: ~1800μatm, pH=7.64) up to 15days, after which critical swimming speed (Ucrit), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress - superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism - total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO2 treatment and smaller larvae in medium pCO2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO2 treatment may indicate that at higher pCO2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO2 levels on organisms.
Resumo:
Self-assembly is a phenomenon that occurs frequently throughout the universe. In this work, two self-assembling systems were studied: the formation of reverse micelles in isooctane and in supercritical CO2 (scCO2), and the formation of gels in organic solvents. The goal was the physicochemical study of these systems and the development of an NMR methodology to study them. In this work, AOT was used as a model molecule both to comprehensively study a widely researched system water/AOT/isooctane at different water concentrations and to assess its aggregation in supercritical carbon dioxide at different pressures. In order to do so an NMR methodology was devised, in which it was possible to accurately determine hydrodynamic radius of the micelle (in agreement with DLS measurements) using diffusion ordered spectroscopy (DOSY), the micellar stability and its dynamics. This was mostly assessed by 1H NMR relaxation studies, which allowed to determine correlation times and size of correlating water molecules, which are in agreement with the size of the shell that interacts with the micellar layer. The encapsulation of differently-sized carbohydrates was also studied and allowed to understand the dynamics and stability of the aggregates in such conditions. A W/CO2 microemulsion was prepared using AOT and water in scCO2, with ethanol as cosurfactant. The behaviour of the components of the system at different pressures was assessed and it is likely that above 130 bar reverse microemulsions were achieved. The homogeneity of the system was also determined by NMR. The formation of the gel network by two small molecular organogelators in toluene-d8 was studied by DOSY. A methodology using One-shot DOSY to perform the spectra was designed and applied with success. This yielded an understanding about the role of the solvent and gelator in the aggregation process, as an estimation of the time of gelation.
Resumo:
Madine Darby Canine Kidney (MDCK) cell lines have been extensively evaluated for their potential as host cells for influenza vaccine production. Recent studies allowed the cultivation of these cells in a fully defined medium and in suspension. However, reaching high cell densities in animal cell cultures still remains a challenge. To address this shortcoming, a combined methodology allied with knowledge from systems biology was reported to study the impact of the cell environment on the flux distribution. An optimization of the medium composition was proposed for both a batch and a continuous system in order to reach higher cell densities. To obtain insight into the metabolic activity of these cells, a detailed metabolic model previously developed by Wahl A. et. al was used. The experimental data of four cultivations of MDCK suspension cells, grown under different conditions and used in this work came from the Max Planck Institute, Magdeburg, Germany. Classical metabolic flux analysis (MFA) was used to estimate the intracellular flux distribution of each cultivation and then combined with partial least squares (PLS) method to establish a link between the estimated metabolic state and the cell environment. The validation of the MFA model was made and its consistency checked. The resulted PLS model explained almost 70% of the variance present in the flux distribution. The medium optimization for the continuous system and for the batch system resulted in higher biomass growth rates than the ones obtained experimentally, 0.034 h-1 and 0.030 h-1, respectively, thus reducing in almost 10 hours the duplication time. Additionally, the optimal medium obtained for the continuous system almost did not consider pyruvate. Overall the proposed methodology seems to be effective and both proposed medium optimizations seem to be promising to reach high cell densities.
Resumo:
RESUMO: As células eucarióticas evoluíram um sistema de sinalização complexo que lhes permite responder aos sinais extracelulares e intracelulares. Desta forma, as vias de sinalização são essenciais para a sobrevivência da célula e do organismo, uma vez que regulam processos fundamentais, tais como o desenvolvimento, o crescimento, a imunidade, e a homeostase dos tecidos. A via de transdução de sinal Hedgehog (Hh) envolve o receptor Patched1 (Ptch1), que tem um efeito inibidor sobre a proteína Smoothened (Smo) na ausência dos seus ligandos, as proteínas Sonic hedgehog (Shh). Estas proteínas são reguladores fundamentais do desenvolvimento embrionário, como ilustrado pelas malformações drásticas observadas em embriões humanos e de murganho com perturbações da transdução de sinal da via Hh e que incluem polidactilia, defeitos craniofaciais e malformações ósseas. Igualmente importantes são as consequências da ativação inapropriada da via de sinalização Hh na formação de tumores. Curiosamente, os componentes desta via localizam-se nos cílios primários. Além disso, demonstrou-se que esta localização é crucial para a sinalização através da via Hh. Na presença dos ligandos, Ptch1 é internalizado e destinado a degradação ou sequestrado num compartimento da célula de onde não pode desempenhar o seu papel inibitório. A proteína Arl13b é uma pequena GTPase pertencente à família Arf/Arl da superfamília Ras de pequenas GTPases e foi implicada no síndrome de Joubert, uma ciliopatia caracterizada por ataxia congénita cerebelar, hipotonia, atrso mental e cardiopatia congénita. Murganhos deficientes para Arl13b, chamado hennin (hnn) morrem morrem prematuramente ao dia 13,5 de gestação (E13,5) e exibem anomalias morfológicas nos cílios que levam à interrupção da sinalização Hh. Além disso, a Arl13b está diretamente envolvida na regulação da via Hh, controlando a localização de vários componentes desta via nos cílios primários. Neste trabalho, mostramos que a Arl13b se localiza em circular dorsal ruffles (CDRs), que são estruturas de actina envolvidas em macropinocitose e internalização de recetores, e que regula a sua formação. Além disso, aprofundámos o conhecimento do processo de ativação da via de sinalização Hh, mostrando que as CDRs sequestram seletivamente e internalizam o recetor Ptch1. As CDRs formam-se minutos após ativação da via por ligandos Shh ou pelo agonista de Smo SAG e continuam a ser formadas a partir daí, sugerindo uma indução contínua da reorganização do citoesqueleto de actina quando a via está ativada. Observámos ainda que a inibição da formação de CDRs através do silenciamento de WAVE1, uma proteína necessária para a formação destas estruturas, resulta na diminuição da ativação da via de sinalização Hh. Além disso, o bloqueio da macropinocitose, que se segue ao fecho das CDRs, através do silenciamento de uma proteína necessária para a cisão de macropinossomas, nomeadamente a proteína BARS, tem um efeito semelhante. Estes resultados sugerem que as CDRs e a macropinocitose são necessárias para a ativação da via de sinalização Hh e indicam que esta via de internalização controla os níveis de sinal Hh. Durante o desenvolvimento, as células proliferativas dependem do cílio primário para a transdução de várias vias de sinalização. A via Hh induz a diferenciação do músculo cardíaco. Por conseguinte, os murganhos deficientes na via de sinalização Hh exibem uma variedade de defeitos de lateralidade, incluindo alteração do looping do coração, como pode ser visto em murganhos deficientes para Arl13b. Por conseguinte, investigámos o papel da Arl13b no desenvolvimento do coração. Mostramos que a Arl13b é altamente expressa no coração de embriões de murganho e de murganhos adultos ao nível do mRNA e da proteína. Além disso, o perfil de distribuição da Arl13b no coração segue o dos cílios primários, que são essenciais para o desenvolvimento cardíaco. Corações de murganhos hnn no estadio E12,5 mostram um canal átrio-ventricular aberto, espessamento da camada compacta ventricular e aumento do índice mitótico no ventrículo esquerdo. Além disso, um atraso de 1 a 2 dias no desenvolvimento é observado em corações de murganhos hnn, quando comparados com controlos selvagens no estadio E13,5. Assim, estes resultados sugerem que a Arl13b é necessária para o desenvolvimento embrionário do coração e que defeitos cardíacos podem contribuir para a letalidade embrionária de murganhos hnn. Em suma, foi estabelecido um novo mecanismo para a regulação dos níveis de superfície do recetor Ptch1, que envolve a remodelação do citoesqueleto de actina e a formação de CDRs após a ativação da via de sinalização Hh. Este mecanismo permite um feedback negativo que evita a repressão excessiva da via através da remoção de Ptch1 da superfície da célula. Além disso, determinou-se que uma mutação de perda de função na Arl13b causa defeitos cardíacos durante o desenvolvimento, possivelmente relacionados com a associação dos defeitos em cílios primários e na sinalização Hh, existentes em murganhos deficientes para Arl13b. A via de sinalização Hh tem tido um papel central entre as vias de sinalização, uma vez que a sua regulação é crucial para o funcionamento apropriada da célula. Assim, a descoberta de um novo mecanismo de tráfego através de macropinocitose e CDRs que controla a ativação e repressão da via de sinalização Hh traz novas perspetivas de como esta via pode ser regulada e pode ainda conduzir à identificação de novos alvos e estratégias terapêuticas. --------------------ABSTRACT: Eukaryotic cells have evolved a complex signaling system that allows them to respond to extracellular and intracellular cues. Signaling pathways are essential for cell and organism survival, since they regulate fundamental processes such as development, growth, immunity, and tissue homeostasis. The Hedgehog (Hh) pathway of signal transduction involves the receptor Patched1 (Ptch1), which has an inhibitory effect on Smoothened (Smo) in the absence of its ligands, the Sonic hedgehog (Shh) proteins. These proteins are fundamental regulators of embryonic development, as illustrated by the dramatic malformations seen in human and mouse embryos with perturbed Hh signal transduction that include polydactyly, craniofacial defects and skeletal malformations. Equally important are the consequences of inappropriate activation of the Hh signaling response in tumor formation. Interestingly, the components of this pathway localize to primary cilia. Moreover, it has been shown that this localization is crucial for Hh signaling. However, in the presence of the ligands, Ptch1 is internalized and destined for degradation or sequestered in a cell compartment where it no longer can play its inhibitory role. ADP-ribosylation factor-like (Arl) 13b, a small GTPase belonging to Arf/Arl family of the Ras superfamily of small GTPases has been implicated in Joubert syndrome, a ciliopathy characterized by congenital cerebellar ataxia, hypotonia, intellectual disability and congenital heart disease. Arl13b-deficient mice, called hennin (hnn) die at embryonic day 13.5 (E13.5) and display morphological abnormalities in primary cilia that lead to the disruption of Hh signaling. Furthermore, Arl13b is directly involved in the regulation of Hh signaling by controlling the localization of several components of this pathway to primary cilia. Here, we show that Arl13b localizes to and regulates the formation of circular dorsal rufles (CDRs), which are actin-basedstructures known to be involved in macropinocytosis and receptor internalization. Additionally, we extended the knowledge of the Hh signaling activation process by showing that CDRs selectively sequester and internalize Ptch1 receptors. CDRs are formed minutes after Hh activation by Shh ligands or the Smo agonist SAG and keep being formed thereafter, suggesting a continuous induction of actin reorganization when the pathway is switched on. Importantly, we observed that disruption of CDRs by silencing WAVE1, a protein required for CDR formation, results in down-regulation of Hh signaling activation. Moreover, the blockade of macropinocytosis, which follows CDR closure, through silencing of a protein necessary for the fission of macropinosomes, namely BARS has a similar effect. These results suggest that CDRs and macropinocytosis are necessary for activation of Hh signaling and indicate that this pathway of internalization controls Hh signal levels. During development, proliferating cells rely on the primary cilium for the transduction of several signaling pathways. Hh induces the differentiation of cardiac muscle. Accordingly, Hh-deficient mice display a variety of laterality defects, including alteration of heart looping, as seen in Arl13b-deficient mice. Therefore, we investigated the role of Arl13b in heart development. We show that Arl13b is highly expressed in the heart of both embryonic and adult mice at mRNA and protein levels. Also, Arl13b localization profile mimics that of primary cilia, which have been shown to be essential to early heart development. E12.5 hnn hearts show an open atrioventricular channel, increased thickening of the ventricular compact layer and increased mitotic index in the left ventricle. Moreover, a delay of 1 to 2 days in development is observed in hnn hearts, when compared to wild-type controls at E13.5. Hence, these results suggest that Arl13b is necessary for embryonic heart development and that cardiac defects might contribute to the embryonic lethality of hnn mice. Altogether, we established a novel mechanism for the regulation of Ptch1 surface levels, involving cytoskeleton remodeling and CDR formation upon Hh signaling activation. This mechanism allows a negative feedback loop that prevents excessive repression of the pathway by removing Ptch1 from the cell surface. Additionally, we determined that the Arl13b loss-offunction mutation causes cardiac defects during development, possibly related to the associated ciliary and Hh signaling defects found in Arl13b-deficient mice. Hh signaling has taken a center stage among the signaling pathways since its regulation is crucial for the appropriate output and function of the cell. Hence, the finding of a novel trafficking mechanism through CDRs and macropinocytosis that controls Hh signaling activation and repression brings new insights to how this pathway can be regulated and can lead to the discovery of novel therapeutic targets and strategies.
Resumo:
In order to evaluate age related changes of the elastic fiber system in the interfoveolar ligament, we studied the deep inguinal ring from 33 male cadavers aged from stillborn to 76 years. Selective and alternated staining methods for elastic fibers were performed to differentiate oxytalan, elaunin, and mature elastic fibers. We confirmed quantitative changes of the elastic fiber system with aging. There was a significant and progressive reduction of the oxytalan fibers (responsible for tissue resistance) and a significant increment in the mature elastic and elaunin fibers (responsible for tissue elasticity). Furthermore, there were structural changes in the thickness, shortness and curling of these mature elastic fibers. These changes induced loss of the elastic fiber function and loss of the interfoveolar ligament compliance. These factors predispose individuals to the development of indirect inguinal hernias that frequently emerge in adults and aged individuals, especially above the fifth decade.
Resumo:
This work aimed to contribute to drug discovery and development (DDD) for tauopathies, while expanding our knowledge on this group of neurodegenerative disorders, including Alzheimer’s disease (AD). Using yeast, a recognized model for neurodegeneration studies, useful models were produced for the study of tau interaction with beta-amyloid (Aβ), both AD hallmark proteins. The characterization of these models suggests that these proteins co-localize and that Aβ1-42, which is toxic to yeast, is involved in tau40 phosphorylation (Ser396/404) via the GSK-3β yeast orthologue, whereas tau seems to facilitate Aβ1-42 oligomerization. The mapping of tau’s interactome in yeast, achieved with a tau toxicity enhancer screen using the yeast deletion collection, provided a novel framework, composed of 31 genes, to identify new mechanisms associated with tau pathology, as well as to identify new drug targets or biomarkers. This genomic screen also allowed to select the yeast strain mir1Δ-tau40 for development of a new GPSD2TM drug discovery screening system. A library of unique 138 marine bacteria extracts, obtained from the Mid-Atlantic Ridge hydrothermal vents, was screened with mir1Δ-tau40. Three extracts were identified as suppressors of tau toxicity and constitute good starting points for DDD programs. mir1Δ strain was sensitive to tau toxicity, relating tau pathology with mitochondrial function. SLC25A3, the human homologue of MIR1, codes for the mitochondrial phosphate carrier protein (PiC). Resorting to iRNA, SLC25A3 expression was silenced in human neuroglioma cells, as a first step towards the engineering of a neural model for replicating the results obtained in yeast. This model is essential to understand the mechanisms of tau toxicity at the mitochondrial level and to validate PiC as a relevant drug target. The set of DDD tools here presented will foster the development of innovative and efficacious therapies, urgently needed to cope with tau-related disorders of high human and social-economic impact.