959 resultados para Symbiotic dinoflagellate
Resumo:
The lower part of the syn-rift Barremian-?Hauterivian section at Site 549 contains a large amount of acid-resistant land-derived organic matter that, as elsewhere in the Cretaceous sediments of the IPOD Leg 80 sites, is thermally immature. This plant debris was derived from a vegetation made up of many species of pteridophytes and gymnosperms. The palynofacies indicate that the sediments were deposited in shallow marginal and nonmarine environments and that the climate was probably warm temperate and fairly moist at the time. Source potential for gas is suggested at some horizons. Most of the younger Lower Cretaceous sediments at this and the other sites were deposited in more open marine conditions. Although they generally contain less organic matter, land plant remains continue to comprise a major part of the palynofacies. The Upper Cretaceous sediments were mainly deposited in well oxygenated conditions and are organically lean. However, stratigraphically restricted dark-colored shales at Sites 549 to 551 contain relatively large quantities of amorphous detritus of at least partly marine origin. These characteristics are suggestive of deposition during periods of restricted circulation and also of source potential for oil and gas if maturation levels had been higher.
Resumo:
For paleoceanographic studies, it is important to understand the processes that influence the calcium (Ca) isotopic composition of foraminiferal calcite tests preserved in the sediment record. Seven species of planktonic foraminifera from coretop sediments collectively exhibited a Ca temperature dependent fractionation of 0.013 per mil per °C. This is in agreement with previously published estimates for most species of planktonic foraminifera as well as biogenic and inorganic calcite and aragonite. Four species of planktonic foraminifera collected from a sediment trap showed a considerable amount of scatter and no consistent temperature dependent fractionation. Analyzed size fractions of coretop samples show no significant relationship with d44/40Ca. However, preliminary results suggest that the symbiotic and spinose foraminifera G. sacculifer might exhibit a relationship between test size and d44/40Ca. A one-box model in which Ca isotopes are allowed to fractionate by Rayleigh distillation from a biomineralization reservoir (internal pool) was used to constrain the isotopic composition of the original biomineralization Ca reservoir, assuming around 85% of the Ca reservoir is precipitated and the fractionation factor during precipitation is 0.9985 + 0.00002(T ºC). To explain the foraminiferal Ca isotope data, this model indicates that the Ca isotopic composition of the biomineralization reservoir is offset from seawater (approximately -0.8per mil).
Resumo:
For the optimal use in palaeoceanographic studies of the stable oxygen isotopic signal and elemental composition of the calcareous photosynthetic dinoflagellate Thoracosphaera heimii, it is essential to gain detailed information about its calcification depth and spatial distribution. We therefore studied the vertical and horizontal distribution patterns of T. heimii in the upper water column (0-200 m) along three transects: an inshore-offshore gradient off Cape Blanc (CB), a south-north transect from CB to the Portuguese coast and a north-south transect off Tanzania. We compared concentrations of living cysts (cells with cell content) with chlorophyll-a, salinity and temperature measurements at the sampling depth. In order to explore the seasonal variability in cyst production, three transect off CB were sampled at three different times of the year. Living T. heimii cysts were found in the upper 160 m of the water column with highest concentrations in the photic zone indicating that the calcification of T. heimii occurs in the upper part of the water column. Maximal abundances of living cysts were found relatively often in or just above the deep chlorophyll maximum (DCM), the depth of which varies regionally from about 20-40 m off CB to about 80 m off Tanzania and along the transect from CB to the Portuguese Coast. However, there was no significant correlation at the 95% confidence level between the cyst concentrations and temperature, salinity and chlorophyll-a concentrations at the sampling depths observed. In both the Atlantic and Indian Oceans, the highest abundances of T. heimii were observed in regions where the upper water masses contained relatively low nutrient concentrations that are influenced only sporadically, or not at all, by enhanced photic zone mixing related to the presence of upwelling cells or river outflow plumes at or close to the sampling sites. The seasonal production of cysts by T. heimii appears to be negatively related to the presence of upwelling filaments across the sampling sites. Our study suggests that turbulence of the upper water masses is a major environmental factor influencing T. heimii production.
Resumo:
The present study is the first study on the stable oxygen isotope composition of the photosynthetic calcareous-walled dinoflagellate species Thoracosphaera heimii off NW Africa during the last 45,000 yr. T. heimii based temperature estimates of sediment core GeoB 8507-3 were compared with those obtained from the stable oxygen isotopes of the planktic foraminifera Globigerina bulloides and Globigerinoides ruber (pink), and the Mg/Ca ratio of G. ruber (pink). We show that the isotopic composition of T. heimii and the temperature estimates based on the equation for inorganically precipitated calcite provide comparable results to those obtained from G. ruber (pink) isotopes and Mg/Ca ratios with exception of the Early Holocene and the Younger Dryas. The recently proposed palaeotemperature equation of Zonneveld et al. (2007), however, provides unrealistic temperature reconstructions that are about 16 °C lower than those based on planktic foraminifera. Thus, this equation needs to be revised. The difference between T. heimii and G. bulloides isotopic and temperature reconstructions can be ascribed to differences in the ecology of both species, especially with regard to their depth habitat and/or seasonal production in the research area. All temperature proxies suggest comparable conditions during the last glacial and Holocene. Small differences between the reconstructed temperature values of T. heimii and the other proxies can be explained by differences in seasonal production of the individual species. The relatively low temperatures recorded by T. heimii at about 15,000 to 8,000 yr BP are interpreted to reflect an increase in duration and/or intensity of the upwelling in the vicinity of the core site in comparison to the last glacial, with an abrupt and strong decrease of upwelling intensity and/or duration during the Early Holocene and the Younger Dryas.