999 resultados para Surface forcing
Resumo:
This study investigated the surface hardening of steels via experimental tests using a multi-kilowatt fiber laser as the laser source. The influence of laser power and laser power density on the hardening effect was investigated. The microhardness analysis of various laser hardened steels was done. A thermodynamic model was developed to evaluate the thermal process of the surface treatment of a wide thin steel plate with a Gaussian laser beam. The effect of laser linear oscillation hardening (LLOS) of steel was examined. An as-rolled ferritic-pearlitic steel and a tempered martensitic steel with 0.37 wt% C content were hardened under various laser power levels and laser power densities. The optimum power density that produced the maximum hardness was found to be dependent on the laser power. The effect of laser power density on the produced hardness was revealed. The surface hardness, hardened depth and required laser power density were compared between the samples. Fiber laser was briefly compared with high power diode laser in hardening medium-carbon steel. Microhardness (HV0.01) test was done on seven different laser hardened steels, including rolled steel, quenched and tempered steel, soft annealed alloyed steel and conventionally through-hardened steel consisting of different carbon and alloy contents. The surface hardness and hardened depth were compared among the samples. The effect of grain size on surface hardness of ferritic-pearlitic steel and pearlitic-cementite steel was evaluated. In-grain indentation was done to measure the hardness of pearlitic and cementite structures. The macrohardness of the base material was found to be related to the microhardness of the softer phase structure. The measured microhardness values were compared with the conventional macrohardness (HV5) results. A thermodynamic model was developed to calculate the temperature cycle, Ac1 and Ac3 boundaries, homogenization time and cooling rate. The equations were numerically solved with an error of less than 10-8. The temperature distributions for various thicknesses were compared under different laser traverse speed. The lag of the was verified by experiments done on six different steels. The calculated thermal cycle and hardened depth were compared with measured data. Correction coefficients were applied to the model for AISI 4340 steel. AISI 4340 steel was hardened by laser linear oscillation hardening (LLOS). Equations were derived to calculate the overlapped width of adjacent tracks and the number of overlapped scans in the center of the scanned track. The effect of oscillation frequency on the hardened depth was investigated by microscopic evaluation and hardness measurement. The homogeneity of hardness and hardened depth with different processing parameters were investigated. The hardness profiles were compared with the results obtained with conventional single-track hardening. LLOS was proved to be well suitable for surface hardening in a relatively large rectangular area with considerable depth of hardening. Compared with conventional single-track scanning, LLOS produced notably smaller hardened depths while at 40 and 100 Hz LLOS resulted in higher hardness within a depth of about 0.6 mm.
Resumo:
The understanding and engineering of bismuth (Bi) containing semiconductor surfaces are signi cant in the development of novel semiconductor materials for electronic and optoelectronic devices such as high-e ciency solar cells, lasers and light emitting diodes. For example, a Bi surface layer can be used as a surfactant which oats on a III-V compound-semiconductor surface during the epitaxial growth of IIIV lms. This Bi surfactant layer improves the lm-growth conditions if compared to the growth without the Bi layer. Therefore, detailed knowledge of the properties of the Bi/III-V surfaces is needed. In this thesis, well-de ned surface layers containing Bi have been produced on various III-V semiconductor substrates. The properties of these Bi-induced surfaces have been measured by low-energy electron di raction (LEED), scanning-tunneling microscopy and spectroscopy (STM), and synchrotron-radiation photoelectron spectroscopy. The experimental results have been compared with theoretically calculated results to resolve the atomic structures of the studied surfaces. The main ndings of this research concern the determination of the properties of an unusual Bi-containing (2×1) surface structure, the discovery and characterization of a uniform pattern of Bi nanolines, and the optimization of the preparation conditions for this Bi-nanoline pattern.
Resumo:
Thirty Meleagris gallopavo heads with their neck segments were used. Animals were contained and euthanized with the association of mebezonium iodide, embutramide and tetracaine hydrochloride (T 61, Intervet ) by intravenous injection. The arterial system was rinsed with cold saline solution (15°C), with 5000IU heparin and filled with red-colored latex. The samples were fixed in 20% formaldehyde for seven days. The brains were removed with a segment of cervical spinal cord and after, the dura-mater was removed and the arteries dissected. The cerebral carotid arteries, after the intercarotid anastomosis, were projected around the hypophysis, until they reached the tuber cinereum and divided into their terminal branches, the caudal branch and the rostral branch. The rostral branch was projected rostrolateralwards and gave off, in sequence, two collateral branches, the caudal cerebral and the middle cerebral arteries and the terminal branch was as cerebroethmoidal artery. The caudal cerebral artery of one antimere formed the interhemispheric artery, which gave off dorsal hemispheric branches to the convex surface of both antimeres. Its dorsal tectal mesencephalic branch, of only one antimere, originated the dorsal cerebellar artery. In the interior of the cerebral transverse fissure, after the origin of the dorsal tectal mesencephalic artery, the caudal cerebral artery emitted occipital hemispheric branches, pineal branches and medial hemispheric branches, on both antimeres. The caudal cerebral artery's territory comprehended the entire surface of the dorsal hemioptic lobe, the rostral surface of the cerebellum, the diencephalic structures, the caudal pole and the medial surface of the cerebral hemisphere and in the convex surface, the sagittal eminence except for its most rostral third. Due to the asymmetry found in the caudal cerebral arteries' ramifications, the models were classified into three types and their respective subtypes.
Resumo:
The classical treatment of rough wall turbulent boundary layers consists in determining the effect the roughness has on the mean velocity profile. This effect is usually described in terms of the roughness function delta U+. The general implication is that different roughness geometries with the same delta U+ will have similar turbulence characteristics, at least at a sufficient distance from the roughness elements. Measurements over two different surface geometries (a mesh roughness and spanwise circular rods regularly spaced in the streamwise direction) with nominally the same delta U+ indicate significant differences in the Reynolds stresses, especially those involving the wall-normal velocity fluctuation, over the outer region. The differences are such that the Reynolds stress anisotropy is smaller over the mesh roughness than the rod roughness. The Reynolds stress anisotropy is largest for a smooth wall. The small-scale anisotropy and interniittency exhibit much smaller differences when the Taylor microscale Reynolds number and the Kolmogorov-normalized mean shear are nominally the same. There is nonetheless evidence that the small-scale structure over the three-dimensional mesh roughness conforms more closely with isotropy than that over the rod-roughened and smooth walls.
Resumo:
A theory for the description of turbulent boundary layer flows over surfaces with a sudden change in roughness is considered. The theory resorts to the concept of displacement in origin to specify a wall function boundary condition for a kappa-epsilon model. An approximate algebraic expression for the displacement in origin is obtained from the experimental data by using the chart method of Perry and Joubert(J.F.M., vol. 17, pp. 193-122, 1963). This expression is subsequently included in the near wall logarithmic velocity profile, which is then adopted as a boundary condition for a kappa-epsilon modelling of the external flow. The results are compared with the lower atmospheric observations made by Bradley(Q. J. Roy. Meteo. Soc., vol. 94, pp. 361-379, 1968) as well as with velocity profiles extracted from a set of wind tunnel experiments carried out by Avelino et al.( 7th ENCIT, 1998). The measurements are found to be in good agreement with the theoretical computations. The skin-friction coefficient was calculated according to the chart method of Perry and Joubert(J.F.M., vol. 17, pp. 193-122, 1963) and to a balance of the integral momentum equation. In particular, the growth of the internal boundary layer thickness obtained from the numerical simulation is compared with predictions of the experimental data calculated by two methods, the "knee" point method and the "merge" point method.
Resumo:
This work studies the forced convection problem in internal flow between concentric annular ducts, with radial fins at the internal tube surface. The finned surface heat transfer is analyzed by two different approaches. In the first one, it is assumed one-dimensional heat conduction along the internal tube wall and fins, with the convection heat transfer coefficient being a known parameter, determined by an uncoupled solution. In the other way, named conjugated approach, the mathematical model (continuity, momentum, energy and K-epsilon equations) applied to tube annuli problem was numerically solved using finite element technique in a coupled formulation. At first time, a comparison was made between results obtained for the conjugated problem and experimental data, showing good agreement. Then, the temperature profiles under these two approaches were compared to each other to analyze the validity of the one-dimensional classical formulation that has been utilized in the heat exchanger design.
Resumo:
The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics machined by a surface grinding process using diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The ground surface was evaluated using Scanning Electron Microscopy (SEM). As a result it can be said that the mechanism of material removal in the grinding of ceramic is largely one of brittle fracture. The increase of the h max can reduce the tangential force required by the process. Although, it results in an increase in the surface damage, reducing the mechanical properties of the ground component.
Resumo:
This paper discusses the effect of tool wear on surface finish in single-point diamond turning of single crystal silicon. The morphology and topography of the machined surface clearly show the type of cutting edge wear reproduced onto the cutting grooves. Scanning electron microscopy is used in order to correlate the cutting edge damage and microtopography features observed through atomic force microscopy. The possible wear mechanisms affecting tool performance and surface generation during cutting are also discussed. The zero degree rake angle single point diamond tool presented small nicks on the cutting edge. The negative rake angle tools presented more a type of crater wear on the rake face. No wear was detected on flank face of the diamond tools.
Resumo:
In the present work we describe a method which allows the incorporation of surface tension into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell, the surface tension effects are incorporated into the free surface boundary conditions through the computation of the capillary pressure. The required curvature is estimated by fitting a least square circle to the free surface using the tracking particles in the cell and in its close neighbors. On a sub-cell scale, short wavelength perturbations are filtered out using a local 4-point stencil which is mass conservative. An efficient implementation is obtained through a dual representation of the cell data, using both a matrix representation, for ease at identifying neighbouring cells, and also a tree data structure, which permits the representation of specific groups of cells with additional information pertaining to that group. The resulting code is shown to be robust, and to produce accurate results when compared with exact solutions of selected fluid dynamic problems involving surface tension.
Resumo:
The main goal of this work is to study the influence of cutting conditions - cutting speed, feed velocity and feed per tooth - on tool life and surface finish of the workpiece in the face milling of flat surfaces. Aiming to achieve this goal, several milling experiments were carried out with different cutting speeds, feed velocities and feeds per tooth. In the first phase of the experiments, cutting speed was varied without varying feed velocity, which caused a variation in feed per tooth. In the second phase of the experiments, cutting speed and feed velocity were varied in such a way that feed per tooth was kept constant. Tool flank wear and surface roughness of the workpiece were measured as cutting time elapsed. The main conclusions of this work are that a) cutting speed has a strong influence on tool life, regardless of whether feed velocity or feed per tooth varies and b) an increase in surface roughness of the workpiece is not closely related to an increase in wear of the primary cutting edge.
Resumo:
Plot-scale overland flow experiments were conducted to evaluate the efficiency of streamside management zones (SMZs) in retaining herbicides in runoff generated from silvicultural activities. Herbicide retention was evaluated for five different slopes (2, 5, 10, 15, and 20%), two cover conditions (undisturbed O horizon and raked surface), and two periods under contrasting soil moisture conditions (summer dry and winter wet season) and correlated to O horizon and site conditions. Picloram (highly soluble in water) and atrazine (moderately sorbed into soil particles) at concentrations in the range of 55 and 35 µg L-1 and kaolin clay (approximately 5 g L-1) were mixed with 13.000 liters of water and dispersed over the top of 5 x 10 m forested plots. Surface flow was collected 2, 4, 6, and 10 m below the disperser to evaluate the changes in concentration as it moved through the O horizon and surface soil horizon-mixing zone. Results showed that, on average, a 10 m long forested SMZ removed around 25% of the initial concentration of atrazine and was generally ineffective in reducing the more soluble picloram. Retention of picloram was only 6% of the applied quantity. Percentages of mass reduction by infiltration were 36% for atrazine and 20% for picloram. Stronger relationships existed between O horizon depth and atrazine retention than in any other measured variable, suggesting that better solid-solution contact associated with flow through deeper O horizons is more important than either velocity or soil moisture as a determinant of sorption.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
The aim of this thesis was to study the surface modification of reverse osmosis membranes by surfactants and the effect of modification on rejection and flux. The surfactants included anionic and nonionic surfactants. The purpose of membrane modification was to improve pure water permeability with increasing salt rejection. The literature part of the study deals with the basic principles of reverse osmosis technology and factors affecting the membrane performance. Also the membrane surface modification by surfactants and their influence on membrane’s surface properties and efficiency (permeability and salt rejection) were discussed. In the experimental part of the thesis two thin-film composite membranes, Desal AG and LE-4040, were modified on-line with three different surfactants. The effects of process parameters (pressure, pH, and surfactant concentration) on surface modification were also examined. The characteristics of the modified membranes were determined by measuring the membranes’ contact angle and zeta potentials. The zeta potential and contact angle measurements indicate that the surfactants were adsorbed onto the both membranes. However, the adsorption did not effect on membrane’s pure water permeability and salt rejection. Thereby, the surface modification of the Desal AG and LE-4040 membranes by surfactants was not able to improve the membrane’s performance.
Resumo:
Billings and Guarapiranga Reservoirs were deeply affected by environmental disturbances, which more evident consequence are the cyanobacterial blooms. Microcystins are the most common cyanotoxin in freshwaters and more than 70 types are known. Different methods for microcystins analysis in water can be used, among which ELISA and HPLC are the most frequently employed. However, less sophisticated and more economic methods can also be used. This is the case of planar chromatography (thin-layer chromatography) method previously used in cyanotoxins purification but gradually replaced by others. Posterior optimization of the microcystin chromatography conditions and because of its simplicity, rapidity, efficiency and low cost, this method is again considered an option for the analysis of microcystins and nodularins. Considering the importance of Billings and Guarapiranga Reservoirs for drinking water supplies and the few scientific data about cyanobacteria and cyanotoxins in these water bodies, the aims of this work are to analyze the biodiversity of cyanobacteria in the Billings and Guarapiranga Reservoirs and the detection of dissolved microcystins in the water. It was possible to identify 17 species of cyanobacteria, 9 of them being potentially toxic. In Billings Reservoir Microcystis aeruginosa (Kützing) Kützing and Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju are the most common species, while in Guarapiranga Reservoir only M. aeruginosa was considered as a common species. Microcystins were detected in all Billings Reservoir samples and in only one sample from Guarapiranga Reservoir.
Influence of surface functionalization on the behavior of silica nanoparticles in biological systems
Resumo:
Personalized nanomedicine has been shown to provide advantages over traditional clinical imaging, diagnosis, and conventional medical treatment. Using nanoparticles can enhance and clarify the clinical targeting and imaging, and lead them exactly to the place in the body that is the goal of treatment. At the same time, one can reduce the side effects that usually occur in the parts of the body that are not targets for treatment. Nanoparticles are of a size that can penetrate into cells. Their surface functionalization offers a way to increase their sensitivity when detecting target molecules. In addition, it increases the potential for flexibility in particle design, their therapeutic function, and variation possibilities in diagnostics. Mesoporous nanoparticles of amorphous silica have attractive physical and chemical characteristics such as particle morphology, controllable pore size, and high surface area and pore volume. Additionally, the surface functionalization of silica nanoparticles is relatively straightforward, which enables optimization of the interaction between the particles and the biological system. The main goal of this study was to prepare traceable and targetable silica nanoparticles for medical applications with a special focus on particle dispersion stability, biocompatibility, and targeting capabilities. Nanoparticle properties are highly particle-size dependent and a good dispersion stability is a prerequisite for active therapeutic and diagnostic agents. In the study it was shown that traceable streptavidin-conjugated silica nanoparticles which exhibit a good dispersibility could be obtained by the suitable choice of a proper surface functionalization route. Theranostic nanoparticles should exhibit sufficient hydrolytic stability to effectively carry the medicine to the target cells after which they should disintegrate and dissolve. Furthermore, the surface groups should stay at the particle surface until the particle has been internalized by the cell in order to optimize cell specificity. Model particles with fluorescently-labeled regions were tested in vitro using light microscopy and image processing technology, which allowed a detailed study of the disintegration and dissolution process. The study showed that nanoparticles degrade more slowly outside, as compared to inside the cell. The main advantage of theranostic agents is their successful targeting in vitro and in vivo. Non-porous nanoparticles using monoclonal antibodies as guiding ligands were tested in vitro in order to follow their targeting ability and internalization. In addition to the targeting that was found successful, a specific internalization route for the particles could be detected. In the last part of the study, the objective was to clarify the feasibility of traceable mesoporous silica nanoparticles, loaded with a hydrophobic cancer drug, being applied for targeted drug delivery in vitro and in vivo. Particles were provided with a small molecular targeting ligand. In the study a significantly higher therapeutic effect could be achieved with nanoparticles compared to free drug. The nanoparticles were biocompatible and stayed in the tumor for a longer time than a free medicine did, before being eliminated by renal excretion. Overall, the results showed that mesoporous silica nanoparticles are biocompatible, biodegradable drug carriers and that cell specificity can be achieved both in vitro and in vivo.