939 resultados para Sulfide Removal
Resumo:
Fleshy fruits fall on to the ground together with cleaned seeds previously ingested by primary dispersers, offering a wide range of fruits and seeds to the ground foragers. Although nutritional properties strongly differ between fruits and seeds, this different seed presentation (cleaned seeds versus seeds within the pulp) has not been addressed in seed removal studies. This study reports on the removal of fruits versus their seeds in five fleshy-fruited species in a temperate forest. We found that rodents removed most of the seeds and partially consumed most of the fruits, preferring seeds to fruits. Rodents bit the fruits to extract the seeds, leaving most of the pulp. We found a preference ranking for the seeds (Sorbus aucuparia>Ilex aquifolium>Sorbus aria>Rosa canina>Crataegus monogyna) but no preferences were found for the fruits, probably due to their similarities in pulp constituents. Seed and fruit choice were affected by chemical and physical properties and not by their size. The presence of alternative and preferred seeds (nuts) delayed the encounter of the fruits and seeds and diminished their removal rates. We found that higher rodent abundance is not necessarily associated with higher removal rates of fleshy fruits. Rodent abundance, fruit size and seed size are minor factors in the removal of fleshy fruits and their seeds. This study underlines that scatter-hoarding rodents are important removers of fleshy fruits and their seeds, producing a differential seed removal depending on the seed presentation (with or without pulp), the nutritional properties of the seeds (but not of the fruits) and the presence of alternative food
Resumo:
Nuts are heavy and nutritious seeds that need animals to be successfully dispersed. Most studies address nut removal by a single animal species once seeds fall onto the ground. However, nuts are also accessible before the seed drop and usually to a wide guild of seed foragers. This study examines the factorscontrollingarborealseedremoval in oak–beechforests within the whole guild of nut foragers. We found that seed-dispersing rodents (Apodemus sylvaticus) were the main acorn removers in the oaks (up to 3.75 m height), with a rapid seed encounter and a high removal rate. However, rodents did not climb the beech trees, probably due to their smoother bark in comparison to oak bark and/or the lower nutritional value of beechnuts with regard to acorns. Jays (Garrulus glandarius) were more abundant in oak stands (both dense and scattered) and clearly preferred acorns to beechnuts whereas nuthatches (Sitta europaea) were more abundant in beech stands and preferred beechnuts to acorns. Non-storing birds such as great tits (Parus major) also removed acorns and beechnuts, especially in the stands where oaks are dominant. Jays and rodents preferred sound seeds over insect-infested seeds but such a preference was not found for nuthatches. This study highlights that pure beech stands showed a reduced guild of arboreal nut foragers in comparison to oak stands. This different guild could probably affect the spatial patterns of seed dispersal, with a proportionally higher number of long dispersal events for acorns (mostly jay-dispersed) than for beechnuts (mostly nuthatch-dispersed). Long-distance dispersal of beechnuts (by jays) is determined by the presence of other preferred species (oaks) and their frequency of non-mast years. Seed location in different habitats strongly determines the contribution of different arboreal removers (including climbing rodents) and their removal speed, leading to a differential seed fate that will eventually affect tree regeneration. As nuthatches are sedentary birds, it is important to maintain old and dead trees where they can breed (crevices), forage (arthropods) and store seeds in order to favor beechnut dispersal and gene flow. By maintaining or favoring oak trees within beech stands we will ensure a wider guild of arboreal nut dispersers.
Resumo:
Various environmental factors may influence the foraging behaviour of seed dispersers which could ultimately affect the seed dispersal process. We examined whether moonlight levels and the presence or absence of rodentshelter affect rodentseedremoval (rate, handling time and time of removal) and seedselection (size and species) among seven oak species. The presence or absence of safe microhabitats was found to be more important than moonlight levels in the removal of seeds. Bright moonlight caused a different temporal distribution of seedremoval throughout the night but only affected the overall removal rates in open microhabitats. Seeds were removed more rapidly in open microhabitat (regardless of the moon phase), decreasing the time allocated to seed discrimination and translocation. Only in open microhabitats did increasing levels of moonlight decrease the time allocated to selection and removal of seeds. As a result, a more precise seedselection was made under shelter, owing to lower levels of predation risk. Rodent ranking preference for species was identical between full/new moon in shelter but not in open microhabitats. For all treatments, species selection by rodents was much stronger than size selection. Nevertheless, heavy seeds, which require more energy and time to be transported, were preferentially removed under shelter, where there is no time restriction to move the seeds. Our findings reveal that seedselection is safety dependent and, therefore, microhabitats in which seeds are located (sheltered versus exposed) and moonlight levels in open areas should be taken into account in rodent food selection studies.
Resumo:
This paper presents a methodology for the incorporation of a Virtual Reality development applied to the teaching of manufacturing processes, namely the group of machining processes in numerical control of machine tools. The paper shows how it is possible to supplement the teaching practice through virtual machine-tools whose operation is similar to the 'real' machines while eliminating the risks of use for both users and the machines.
Resumo:
The magnetoencephalogram (MEG) is contaminated with undesired signals, which are called artifacts. Some of the most important ones are the cardiac and the ocular artifacts (CA and OA, respectively), and the power line noise (PLN). Blind source separation (BSS) has been used to reduce the influence of the artifacts in the data. There is a plethora of BSS-based artifact removal approaches, but few comparative analyses. In this study, MEG background activity from 26 subjects was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Infomax, and FastICA) and one constrained BSS (cBSS) techniques. Then, the ability of several combinations of BSS algorithm, epoch length, and artifact detection metric to automatically reduce the CA, OA, and PLN were quantified with objective criteria. The results pinpointed to cBSS as a very suitable approach to remove the CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics based on entropy or power criteria decreased the OA. Finally, the PLN was reduced by means of a spectral metric. These findings confirm the utility of BSS to help in the artifact removal for MEG background activity.
Resumo:
The electronic structure of modified chalcopyrite CuInS2 has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination.