972 resultados para Sugarcane - Residues


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have obtained an experimental estimate of the free energy change associated with variations at the interface between protein subunits, a subject that has raised considerable interest since the concept of accessible surface area was introduced by Lee and Richards [Lee, B. & Richards, F. M. (1971) J. Mol. Biol. 55, 379–400]. We determined by analytical ultracentrifugation the dimer–tetramer equilibrium constant of five single and three double mutants of human Hb. One mutation is at the stationary α1β1 interface, and all of the others are at the sliding α1β2 interface where cleavage of the tetramer into dimers and ligand-linked allosteric changes are known to occur. A surprisingly good linear correlation between the change in the free energy of association of the mutants and the change in buried hydrophobic surface area was obtained, after corrections for the energetic cost of losing steric complementarity at the αβ dimer interface. The slope yields an interface stabilization free energy of −15 ± 1.2 cal/mol upon burial of 1 Å2 of hydrophobic surface, in very good agreement with the theoretical estimate given by Eisenberg and McLachlan [Eisenberg, D. & McLachlan, A. D. (1986) Nature (London) 319, 199–203].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To initiate fertilization, mouse sperm bind to Ser- (O-) linked oligosaccharides located at the sperm combining site of zona pellucida glycoprotein mZP3. Apparently, the oligosaccharides are present on one or more of five Ser residues clustered in the carboxyl-terminal region of the mZP3 polypeptide. Here, each of the Ser residues, as well as an intervening Asn residue, was converted to a small, nonhydroxy amino acid by site-directed mutagenesis. Mouse embryonal carcinoma (EC) cells were then stably transfected with the wild-type and mutated mZP3 genes. In each case, transfected cells synthesized and secreted recombinant EC-mZP3 into the culture medium. The glycoproteins were partially purified and assayed for their ability to inhibit binding of sperm to ovulated eggs in vitro. As compared with wild-type EC-mZP3, mutations of Ser-329, Ser-331, or Ser-333 had no effect on sperm receptor activity. Mutation of Asn-330, a potential N-linked glycosylation site, also had no effect on sperm receptor activity. On the other hand, mutation of either Ser-332 or Ser-334, or mutation of Ser-332, Ser-333, and Ser-334, resulted in complete inactivation of EC-mZP3 as a sperm receptor. These results suggest that Ser-332 and Ser-334, residues conserved in mouse, hamster, and human ZP3, are essential for sperm receptor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although many polar residues are directly involved in transmembrane protein functions, the extent to which they contribute to more general structural features is still unclear. Previous studies have demonstrated that asparagine residues can drive transmembrane helix association through interhelical hydrogen bonding [Choma, C., Gratkowski, H., Lear, J. D. & DeGrado, W. F. (2000) Nat. Struct. Biol. 7, 161–166; and Zhou, F. X., Cocco, M. J., Russ, W. P., Brunger, A. T. & Engelman, D. M. (2000) Nat. Struct. Biol. 7, 154–160]. We have studied the ability of other polar residues to promote helix association in detergent micelles and in biological membranes. Our results show that polyleucine sequences with Asn, Asp, Gln, Glu, and His, residues capable of being simultaneously hydrogen bond donors and acceptors, form homo- or heterooligomers. In contrast, polyleucine sequences with Ser, Thr, and Tyr do not associate more than the polyleucine sequence alone. The results therefore provide experimental evidence that interactions between polar residues in the helices of transmembrane proteins may serve to provide structural stability and oligomerization specificity. Furthermore, such interactions can allow structural flexibility required for the function of some membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to IFN-γ, the latent cytoplasmic Stat1 (signal transducer and activator of transcription) proteins translocate into the nucleus and activate transcription. We showed previously that Stat1 recruits a group of nuclear proteins, among them MCM5 (minichromosome maintenance) and MCM3, for transcription activation. MCM5 directly interacts with the transcription activation domain (TAD) of Stat1 and enhances Stat1-mediated transcription activation. In this report, we identified two specific residues (R732, K734) in MCM5 that are required for the direct interaction between Stat1 and MCM5 both in vitro and in vivo. MCM5 containing mutations of R732/K734 did not enhance Stat1-mediated transcription activation in response to IFN-γ. In addition, it also failed to form complexes with other MCM proteins in vivo, suggesting that these two residues may be important for an interaction domain in MCM5. Furthermore, MCM5 bearing mutations in its ATPase and helicase domains did not enhance Stat1 activity. In vitro binding assays indicate that MCM3 does not interact directly with Stat1, suggesting that the presence of MCM3 in the group of Stat1TAD-interacting proteins is due to the association of MCM3 with MCM5. Finally, gel filtration analyses of nuclear extracts from INF-γ-treated cells demonstrate that there is a MCM5/3 subcomplex coeluting with Stat1. Together, these results strongly suggest that Stat1 recruits a MCM5/3 subcomplex through direct interaction with MCM5 in the process of IFN-γ-induced gene activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A β-hairpin conformation has been characterized in crystals of the decapeptide t-butoxycarbonyl-Leu-Val-βPhe-Val-DPro-Gly-Leu-βPhe-Val-Val-methyl ester [βPhe; (S)-β3 homophenylalanine] by x-ray diffraction. The polypeptide chain reversal is nucleated by the centrally positioned DPro-Gly segment, which adopts a type-I′ β-turn conformation. Four intramolecular cross-strand hydrogen bonds stabilize the peptide fold. The βPhe(3) and βPhe(8) residues occupy facing positions on the hairpin, with the side chains projecting on opposite faces of the β-sheet. At the site of insertion of β-residues, the polarity of the peptide units along each strand reverses, as compared with the α-peptide segments. In this analog, a small segment of a polar sheet is observed, where adjacent CO and NH groups line up in opposite directions in each strand. In the crystal, an extended β-sheet is formed by hydrogen bonding between strands of antiparallel pairs of β-hairpins. The crystallographic parameters for C65H102N10O13⋅ 3H2O are: space group P212121; a = 19.059(8) Å, b = 19.470(2) Å, c = 21.077(2) Å; Z = 4; agreement factor R1 = 9.12% for 3,984 data observed >4σ(F) and a resolution of 0.90 Å.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In human cells, hMLH1, hMLH3, hPMS1 and hPMS2 are four recognised and distinctive homologues of MutL, an essential component of the bacterial DNA mismatch repair (MMR) system. The hMLH1 protein forms three different heterodimers with one of the other MutL homologues. As a first step towards functional analysis of these molecules, we determined the interacting domains of each heterodimer and tried to understand their common features. Using a yeast two-hybrid assay, we show that these MutL homologues can form heterodimers by interacting with the same amino acid residues of hMLH1, residues 492–742. In contrast, three hMLH1 partners, hMLH3, hPMS1 and hPMS2 contain the 36 homologous amino acid residues that interact strongly with hMLH1. Contrary to the previous studies, these homologous residues reside at the N-terminal regions of three subdomains conserved in MutL homologues in many species. Interestingly, these residues in hPMS2 and hMLH3 may form coiled-coil structures as predicted by the MULTICOIL program. Furthermore, we show that there is competition for the interacting domain in hMLH1 among the three other MutL homologues. Therefore, the quantitative balance of these three MutL heterodimers may be important in their functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA-mediated, posttranscriptional gene silencing has been determined as the molecular mechanism underlying transgenic virus resistance in many plant virus-dicot host plant systems. In this paper we show that transgenic virus resistance in sugarcane (Saccharum spp. hybrid) is based on posttranscriptional gene silencing. The resistance is derived from an untranslatable form of the sorghum mosaic potyvirus strain SCH coat protein (CP) gene. Transgenic sugarcane plants challenged with sorghum mosaic potyvirus strain SCH had phenotypes that ranged from fully susceptible to completely resistant, and a recovery phenotype was also observed. Clones derived from the same transformation event or obtained after vegetative propagation could display different levels of virus resistance, suggesting the involvement of a quantitative component in the resistance response. Most resistant plants displayed low or undetectable steady-state CP transgene mRNA levels, although nuclear transcription rates were high. Increased DNA methylation was observed in the transcribed region of the CP transgenes in most of these plants. Collectively, these characteristics indicate that an RNA-mediated, homology-dependent mechanism is at the base of the virus resistance. This work extends posttranscriptional gene silencing and homology-dependent virus resistance, so far observed only in dicots, to an agronomically important, polyploid monocot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling, derivatives were constructed containing an N-terminal myristylation signal for plasma membrane localization and a point mutation (K650E) that confers constitutive kinase activation. A derivative containing all conserved tyrosine residues stimulates cellular transformation and activation of several FGFR3 signaling pathways. Substitution of all nonactivation loop tyrosine residues with phenylalanine rendered this FGFR3 construct inactive, despite the presence of the activating K650E mutation. Addition of a single tyrosine residue, Y724, restored its ability to stimulate cellular transformation, phosphatidylinositol 3-kinase activation, and phosphorylation of Shp2, MAPK, Stat1, and Stat3. These results demonstrate a critical role for Y724 in the activation of multiple signaling pathways by constitutively activated mutants of FGFR3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p13suc1 has two native states, a monomer and a domain-swapped dimer. We show that their folding pathways are connected by the denatured state, which introduces a kinetic barrier between monomer and dimer under native conditions. The barrier is lowered under conditions that speed up unfolding, thereby allowing, to our knowledge for the first time, a quantitative dissection of the energetics of domain swapping. The monomer–dimer equilibrium is controlled by two conserved prolines in the hinge loop that connects the exchanging domains. These two residues exploit backbone strain to specifically direct dimer formation while preventing higher-order oligomerization. Thus, the loop acts as a loaded molecular spring that releases tension in the monomer by adopting its alternative conformation in the dimer. There is an excellent correlation between domain swapping and aggregation, suggesting they share a common mechanism. These insights have allowed us to redesign the domain-swapping propensity of suc1 from a fully monomeric to a fully dimeric protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The II-III loop of the skeletal muscle dihydropyridine receptor (DHPR) α1S subunit is responsible for bidirectional-signaling interactions with the ryanodine receptor (RyR1): transmitting an orthograde, excitation–contraction (EC) coupling signal to RyR1 and receiving a retrograde, current-enhancing signal from RyR1. Previously, several reports argued for the importance of two distinct regions of the skeletal II-III loop (residues R681–L690 and residues L720–Q765, respectively), claiming for each a key function in DHPR–RyR1 communication. To address whether residues 720–765 of the II-III loop are sufficient to enable skeletal-type (Ca2+ entry-independent) EC coupling and retrograde interaction with RyR1, we constructed a green fluorescent protein (GFP)-tagged chimera (GFP-SkLM) having rabbit skeletal (Sk) DHPR sequence except for a II-III loop (L) from the DHPR of the house fly, Musca domestica (M). The Musca II-III loop (75% dissimilarity to α1S) has no similarity to α1S in the regions R681–L690 and L720–Q765. GFP-SkLM expressed in dysgenic myotubes (which lack endogenous α1S subunits) was unable to restore EC coupling and displayed strongly reduced Ca2+ current densities despite normal surface expression levels and correct triad targeting (colocalization with RyR1). Introducing rabbit α1S residues L720–L764 into the Musca II-III loop of GFP-SkLM (substitution for Musca DHPR residues E724–T755) completely restored bidirectional coupling, indicating its dependence on α1S loop residues 720–764 but its independence from other regions of the loop. Thus, 45 α1S-residues embedded in a very dissimilar background are sufficient to restore bidirectional coupling, indicating that these residues may be a site of a protein–protein interaction required for bidirectional coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures and biochemical analyses of PcrA helicase provide evidence for a model for processive DNA unwinding that involves coupling of single-stranded DNA (ssDNA) tracking to a duplex destabilization activity. The DNA tracking model invokes ATP-dependent flipping of bases between several pockets on the enzyme formed by conserved aromatic amino acid residues. We have used site-directed mutagenesis to confirm the requirement of all of these residues for helicase activity. We also demonstrate that the duplex unwinding defects correlate with an inability of certain mutant proteins to translocate effectively on ssDNA. Moreover, the results define an essential triad of residues within the ssDNA binding site that comprise the ATP-driven DNA motor itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of the Neu/ErbB-2 receptor tyrosine kinase has been implicated in the genesis of human breast cancer. Indeed, expression of either activated or wild-type neu in the mammary epithelium of transgenic mice results in the induction of mammary tumors. Previously, we have shown that many of the mammary tumors arising in transgenic mice expressing wild-type neu occur through somatic activating mutations within the neu transgene itself. Here we demonstrate that these mutations promote dimerization of the Neu receptor through the formation of disulfide bonds, resulting in its constitutive activation. To explore the role of conserved cysteine residues within the region deleted in these altered Neu proteins, we examined the transforming potential of a series of Neu receptors in which the individual cysteine residues were mutated. These analyses indicated that mutation of certain cysteine residues resulted in the oncogenic activation of Neu. The increased transforming activity displayed by the altered receptors correlated with constitutive dimerization that occurred in a disulfide bond-dependent manner. We further demonstrate that addition of 2-mercaptoethanol to the culture medium interfered with the specific transforming activity of the mutant Neu receptors. These observations suggest that oncogenic activation of Neu results from constitutive disulfide bond-dependent dimerization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by alanine mutagenesis. Substitution of either F152 or K155 with alanine was found to specifically inhibit cytokine interaction with LIFR without affecting binding to CNTFR alpha or gp130. The resulting variants behaved as partial agonists with varying degrees of residual bioactivity in different cell-based assays. Simultaneous alanine substitution of both F152 and K155 totally abolished biological activity. Combining these mutations with amino acid substitutions in the D-helix, which enhance binding affinity for the CNTFR alpha, gave rise to a potent competitive CNTF receptor antagonist. This protein constitutes a new tool for studies of CNTF function in normal physiology and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signaling through the erythropoietin receptor (EPO-R) is crucial for proliferation, differentiation, and survival of erythroid progenitor cells. EPO induces homodimerization of the EPO-R, triggering activation of the receptor-associated kinase JAK2 and activation of STAT5. By mutating the eight tyrosine residues in the cytosolic domain of the EPO-R, we show that either Y343 or Y401 is sufficient to mediate maximal activation of STAT5; tyrosine residues Y429 and Y431 can partially activate STAT5. Comparison of the sequences surrounding these tyrosines reveals YXXL as the probable motif specifying recruitment of STAT5 to the EPO-R. Expression of a mutant EPO-R lacking all eight tyrosine residues in the cytosolic domain supported a low but detectable level of EPO-induced STAT5 activation, indicating the existence of an alternative pathway for STAT5 activation independent of any tyrosine in the EPO-R. The kinetics of STAT5 activation and inactivation were the same, regardless of which tyrosine residue in the EPO-R mediated its activation or whether the alternative pathway was used. The ability of mutant EPO-Rs to activate STAT5 did not directly correlate with their mitogenic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistically significant charge clusters (basic, acidic, or of mixed charge) in tertiary protein structures are identified by new methods from a large representative collection of protein structures. About 10% of protein structures show at least one charge cluster, mostly of mixed type involving about equally anionic and cationic residues. Positive charge clusters are very rare. Negative (or histidine-acidic) charge clusters often coordinate calcium, or magnesium or zinc ions [e.g., thermolysin (PDB code: 3tln), mannose-binding protein (2msb), aminopeptidase (1amp)]. Mixed-charge clusters are prominent at interchain contacts where they stabilize quaternary protein formation [e.g., glutathione S-transferase (2gst), catalase (8act), and fructose-1,6-bisphosphate aldolase (1fba)]. They are also involved in protein-protein interaction and in substrate binding. For example, the mixed-charge cluster of aspartate carbamoyl-transferase (8atc) envelops the aspartate carbonyl substrate in a flexible manner (alternating tense and relaxed states) where charge associations can vary from weak to strong. Other proteins with charge clusters include the P450 cytochrome family (BM-3, Terp, Cam), several flavocytochromes, neuraminidase, hemagglutinin, the photosynthetic reaction center, and annexin. In each case in Table 2 we discuss the possible role of the charge clusters with respect to protein structure and function.