973 resultados para Subsidies. Countervailing measures. Regulation. Administrative control
Resumo:
Fungi are primitive eukaryotes and have adapted to a variety of niches during evolution. Some fungal species may interact with other life forms (plants, insects, mammals), but are considered as pathogens when they cause mild to severe diseases. Chemical control strategies have emerged with the development of several drugs with antifungal activity against pathogenic fungi. Antifungal agents have demonstrated their efficacy by improving patient health in medicine. However, fungi have counteracted antifungal agents in several cases by developing resistance mechanisms. These mechanisms rely on drug resistance genes including multidrug transporters and drug targets. Their regulation is crucial for the development of antifungal drug resistance and therefore transcriptional factors critical for their regulation are being characterized. Recent genome-wide studies have revealed complex regulatory circuits involving these genetic and transcriptional regulators. Here, we review the current understanding of the transcriptional regulation of drug resistance genes from several fungal pathogens including Candida and Aspergillus species.
Resumo:
The aim of this study was to develop and validate an analytical method to simultaneously determine European Union-regulated beta-lactams (penicillins and cephalosporins) and quinolones in cow milk. The procedure involves a new solid phase extraction (SPE) to clean-up and pre-concentrate the three series of antibiotics before analysis by liquid chromatography¿tandem mass spectrometry (LC-MS/MS) and ultra-high-performance liquid chromatography¿tandem mass spectrometry (UPLC-MS/MS). LC-MS/MS and UPLC-MS/MS techniques were also compared. The method was validated according to the Directive 2002/657/EC and subsequently applied to 56 samples of raw cow milk supplied by the Laboratori Interprofessional Lleter de Catalunya (ALLIC) (Laboratori Interprofessional Lleter de Catalunya, Control Laboratory Interprofessional of Milk of Catalunya).
Resumo:
The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.
Resumo:
N(6)-methyl-adenines can serve as epigenetic signals for interactions between regulatory DNA sequences and regulatory proteins that control cellular functions, such as the initiation of chromosome replication or the expression of specific genes. Several of these genes encode master regulators of the bacterial cell cycle. DNA adenine methylation is mediated by Dam in gamma-proteobacteria and by CcrM in alpha-proteobacteria. A major difference between them is that CcrM is cell cycle regulated, while Dam is active throughout the cell cycle. In alpha-proteobacteria, GANTC sites can remain hemi-methylated for a significant period of the cell cycle, depending on their location on the chromosome. In gamma-proteobacteria, most GATC sites are only transiently hemi-methylated, except regulatory GATC sites that are protected from Dam methylation by specific DNA-binding proteins.
Resumo:
Résumé : Le cancer, qui est responsable d'un quart des décès en Suisse, exhibe un état cellulaire désordonné, qui lui-même, est la conséquence d'un dérèglement des gènes. Le gène le plus fréquemment altéré, dans les cas de cancers humains, est p53. Ce gène encode un facteur de transcription, impliqué dans la régulation de nombreux gènes impliqués dans le cycle cellulaire, l'apoptose ou la différenciation. Notre laboratoire a récemment identifié seize nouveaux gènes, dont l'expression est régulée par p53, parmi lesquels sept4, su jet de cette thèse. La protéine 5EPT4 appartient à la famille des septines, qui est impliquée dans la cytokinèse. Dans ce travail, nous avons confirmé la régulation de l'expression de sept4 par p53 dans des tissus de souris, et étonnamment, seul un des deux promoteurs du gène sept4 est contrôlé par p53. En outre, l'approche immunohistologique nous a permis de supposer une implication de la protéine SEPT4 dans le mécanisme de l'exocytose. Cette hypothèse a été confirmée par l'interaction de SEPT4 avec la protéine syntaxine 1A, et par son activité inhibitrice sur la sécrétion stimulée. En élargissant l'étude de la protéine SEPT4, nous avons découvert que celle-ci avait comme partenaire fonctionnel, la protéine Pinl, une enzyme qui catalyse l'isomérisation cis-trans du lien peptidique précédant une proline. bans ce contexte, nous avons démontré que l'interaction entre ces deux protéines reposait sur le domaine WW de Pinl, un type de domaine reconnaissant les motifs phosphoséryl-prolyl et phosphothréonyl-prolyl. Ce dernier résultat nous a conduit à examiner la phosphorylation de 5EPT4. Nous avons démontré que la partie N-terminale de SEPT4 était phosphorylée par la kinase Cdk5. La co¬expression de Cdk5 et de SEPT4 stimule la dégradation de SEPT4, indépendamment de la voie du protéasome. Ainsi, l'ensemble de nos observations fournissent l'évidence de l'engagement de la protéine SEPT4 dans la régulation de l'exocytose, et soutiennent le rôle de p53 dans le contrôle de l'exocytose, via SEPT4, ce qui constituerait un nouveau rôle fonctionnel pour ce gardien du génome. Summary: Cancer, which is responsible for a quarter of the deaths in Switzerland, exhibits a disordered cellular state, which itself, is the consequence of an altered state of genes. The most frequently altered gene in human cancer is p53. This gene encodes a transcription factor, implicated in the regulation of numerous genes involved in cell cycle, apoptosis or differentiation. Our laboratory has recently identified sixteen new genes whose expression is regulated by p53, amongst them septin 4, which is the subject of this thesis. The SEPT4 protein belongs to the septin family which is implicated in cytokinesis. In the present work, we have confirmed the regulation of sept4 expression by p53 in mouse tissues, and surprisingly, only one of the two sept4 promoters is regulated by p53. In addition, the immunohistologic approach enabled us to suppose a role of SEPT4 in exocytosis. This assumption was confirmed by the interaction of SEPT4 with syntaxin 1A, and by its inhibiting activity on stimulated secretion. By widening the analysis of SEPT4, we identified Pin1 as an interacting protein. Pin1 is an enzyme which catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue. In this context, we showed that the interaction between these two proteins depends on the WW domain of Pin 1. This domain has been shown to function as a phosphoserine- or phosphothreonine¬binding module. This last result prompted us to examine phosphorylation of SEPT4. We demonstrated that the N-terminal portion of SEPT4 was phosphorylated by the Cdk5 kinase. The co-expression of Cdk5 with 5EPT4 stimulates SEPT4 degradation, independently of the proteasome pathway. Thus, these observations provide evidence for the engagement of SEPT4 in the regulation of exocytosis, and supports the role of p53 in the control of exocytosis, via SEPT4, which constitutes a new functional role for this guardian of the genome.
Resumo:
Resolution of lesions induced by Leishmania major in mice results from the development of Th1 responses. Cytokines produced by Th1 cells activate macrophages to a parasiticidal state. The development of Th2 responses in mice from a few strains underlies susceptibility to infection. Cytokines produced by Th2 cells exacerbate the development of lesions because of their deactivating properties for macrophages. This murine model of infection has provided significant insight into the mechanisms intrinsic to the differentiation of disparate CD4+ T cell subsets in vivo in animals from different genetic backgrounds.
Resumo:
BACKGROUND: The evidence for a "diabesity" epidemic is accumulating worldwide but population-based data are still scarce in the African region. We assessed the prevalence, awareness and control of diabetes (DM) in the Seychelles, a rapidly developing country in the African region. We also examined the relationship between body mass index, fasting serum insulin and DM. METHODS: Examination survey in a sample representative of the entire population aged 25-64 of the Seychelles, attended by 1255 persons (participation rate of 80.2%). An oral glucose tolerance test (OGTT) was performed in individuals with fasting blood glucose between 5.6 and 6.9 mmol/l. Diabetes mellitus (DM), impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) were defined along criteria of the ADA. Prevalence estimates were standardized for age. RESULTS: The prevalence of DM was 11.5% and 54% of persons with DM were aware of having DM. Less than a quarter of all diabetic persons under treatment were well controlled for glycemia (HbA1c), blood pressure or LDL-cholesterol. The prevalence of IGT and IFG were respectively 10.4% and 24.2%. The prevalence of excess weight (BMI > or = 25 kg/m2) and obesity (BMI > or = 30 kg/m2) was respectively 60.1% and 25.0%. Half of all DM cases in the population could be attributed to excess weight. CONCLUSION: We found a high prevalence of DM and pre-diabetes in a rapidly developing country in the African region. The strong association between overweight and DM emphasizes the importance of weight control measures to reduce the incidence of DM in the population. High rates of diabetic persons not aware of having DM in the population and insufficient cardiometabolic control among persons treated for DM stress the need for intensifying health care for diabetes.
Resumo:
An outbreak of vancomycin-resistant enterococci (VRE) occurred in 2011 in several hospitals of western Switzerland. Given that VRE can spread rapidly within hospitals and due to the potential transfer of resistance genes to other nosocomial pathogens like MRSA, stringent control measures were implemented. Excellent coordination of control measures between partner healthcare settings was successful in stopping the outbreak.
Resumo:
The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.
Resumo:
c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase,SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.
Resumo:
Lipin 1 is a coregulator of DNA-bound transcription factors and a phosphatidic acid (PA) phosphatase (PAP) enzyme that catalyzes a critical step in the synthesis of glycerophospholipids. Lipin 1 is highly expressed in adipocytes, and constitutive loss of lipin 1 blocks adipocyte differentiation; however, the effects of Lpin1 deficiency in differentiated adipocytes are unknown. Here we report that adipocyte-specific Lpin1 gene recombination unexpectedly resulted in expression of a truncated lipin 1 protein lacking PAP activity but retaining transcriptional regulatory function. Loss of lipin 1-mediated PAP activity in adipocytes led to reduced glyceride synthesis and increased PA content. Characterization of the deficient mice also revealed that lipin 1 normally modulates cAMP-dependent signaling through protein kinase A to control lipolysis by metabolizing PA, which is an allosteric activator of phosphodiesterase 4 and the molecular target of rapamycin. Consistent with these findings, lipin 1 expression was significantly related to adipose tissue lipolytic rates and protein kinase A signaling in adipose tissue of obese human subjects. Taken together, our findings identify lipin 1 as a reciprocal regulator of triglyceride synthesis and hydrolysis in adipocytes, and suggest that regulation of lipolysis by lipin 1 is mediated by PA-dependent modulation of phosphodiesterase 4.
Resumo:
Background: A hospitalised patient infected with MRSA was found to harbour a VISA strain after 6 weeks of treatment with vancomycin. Additional contact measures were reinforced according to CDCs recommendations. We decide to evaluate if these applied control measures were effective. Objective: To evaluate the efficacy of strict additional contact measures to contain the dissemination of VISA from an infected patient. Methods: All patients from the unit were screened weekly for MRSA during a 6-week period, whereas health care workers (HCW) were screened only once. Screening specimen included nose, throat, groin, and clinical specimens for patients, and only nose and throat for HCW. Broth enrichment and chromogenic agar (MRSA-select) were used for MRSA detection. All MRSA isolates were tested on Van screen plates, and growing colonies were tested for MIC of vancomycin. MIC was performed using Etest. Population analysis was done for VISA confirmation. One strain per person was typed by Double Locus Sequence Typing (based on clfB and spa sequencing). Results: 66 patients hospitalized in the same service during the 6 weeks and 55 HCW were screened for MRSA and VISA. MRSA was found in 16/66 (24%) patients and 1/55 (2%) HCW. 16/17 MRSA from patients belonged to the same genotype that the VISA strain. The remaining patient had a MRSA identical to the HCW isolate. Among the 16 MRSA isolates sharing the same genotype than the VISA strain, two showed Etests vancomycin MIC of only 4 mg/L. MIC results were confirmed by the population analysis. They were not considered as VISA, but as MRSA with increased vancomycin MICs. Both isolates were obtained from two roommates. Conclusion: Strict additional contact measures were found to be effective to contain VISA dissemination. However, the identification of two isolates with increased vancomycin MIC (4 mg/L) in two roommates raised the question of the need to routinely test this susceptibility and of adequate control measures for patients harbouring such isolates.
Resumo:
Cells are subjected to dramatic changes of gene expression upon environmental changes. Stresscauses a general down-regulation of gene expression together with the induction of a set of stress-responsivegenes. The p38-related stress-activated protein kinase Hog1 is an important regulator of transcription uponosmostress in yeast. Genome-wide localization studies of RNA polymerase II (RNA Pol II) and Hog1 showed that stress induced major changes in RNA Pol II localization, with a shift toward stress-responsive genes relative to housekeeping genes. RNA Pol II relocalization required Hog1, which was also localized to stress-responsive loci. In addition to RNA Pol II-bound genes, Hog1 also localized to RNA polymerase III-bound genes, pointing to a wider role for Hog1 in transcriptional control than initially expected. Interestingly, an increasing association of Hog1 with stressresponsive genes was strongly correlated with chromatin remodeling and increased gene expression. Remarkably, MNase-Seq analysis showed that although chromatin structure was not significantly altered at a genome-wide level in response to stress, there was pronounced chromatin remodeling for those genes that displayed Hog1 association. Hog1 serves to bypass the general down-regulation of gene expression that occurs in response to osmostress, and does so both by targeting RNA Pol II machinery and by inducing chromatin remodeling at stressresponsive loci.
Resumo:
PURPOSE OF REVIEW: Previous studies have shown that a variety of specific renal functions exhibit circadian oscillations. This review aims to provide an update on the molecular mechanisms underlying circadian rhythms in the kidney, and to discuss how dysregulation of circadian rhythms can interfere with kidney function. RECENT FINDINGS: The molecular mechanism responsible for generating and maintaining circadian rhythms has been unraveled in great detail. This mechanism, known as the circadian clock, drives circadian oscillation in expression levels of a large number of renal mRNA transcripts. Several proteins critically involved in renal homeostatic functions have been shown to exhibit significant circadian oscillation in their expression levels or in their posttranslational modifications. In transgenic mouse models, disruption of circadian clock activity results in dramatic changes in the circadian pattern of urinary sodium and potassium excretion and causes significant changes in arterial blood pressure. A growing amount of evidence suggests that dysregulation of circadian rhythms is associated with the development of hypertension and accelerated progression of chronic kidney disease and cardiovascular disease in humans. Chronotherapy studies have shown that the efficacy of antihypertensive medication is greatly dependent on the circadian time of drug administration. SUMMARY: Recent research points to the major role of circadian rhythms in renal function and in control of blood pressure.
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation