992 resultados para Sr^2
Resumo:
We present monthly resolved records of strontium/calcium (Sr/Ca) and oxygen isotope (d18O) ratios from well-preserved fossil corals drilled during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' and reconstruct sea surface conditions in the central tropical South Pacific Ocean during two time windows of the last deglaciation. The two Tahiti corals examined here are uranium/thorium (U/Th)-dated at 12.4 and 14.2 ka, which correspond to the Younger Dryas (YD) cold reversal and the Bølling-Allerød (B-A) warming of the Northern Hemisphere, respectively. The coral Sr/Ca records indicate that annual average sea surface temperature (SST) was 2.6-3.1 °C lower at 12.4 ka and 1.0-1.6 °C lower at 14.2 ka relative to the present, with no significant changes in the amplitude of the seasonal SST cycle. These cooler conditions were accompanied by seawater d18O (d18Osw) values higher by ~0.8 per mill and ~0.6 per mill relative to the present at 12.4 and 14.2 ka, respectively, implying more saline conditions in the surface waters. Along with previously published coral Sr/Ca records from the island [Cohen and Hart (2004), Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19, PA4031, doi:10.1029/2004PA001084], our new Tahiti coral records suggest that a shift toward lower SST by ~1.5 °C occurred from 13.1 to 12.4 ka, which was probably associated with a shift toward higher d18Osw by ~0.2 per mill. Along with a previously published coral Sr/Ca record from Vanuatu [Corrège et al. (2004), Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dyras event. Nature 428, 927-929], the Tahiti coral records provide new evidence for a pronounced cooling of the western to central tropical South Pacific during the Northern Hemisphere YD event.
Resumo:
Unusually well preserved Cretaceous radiolarians are observed in the subsurface sections from two drilled sites in the Weddell Sea collected during Leg 113 of the Ocean Drilling Program. Radiolarians from the lithified calcareous chalk of Hole 689B represent the first Campanian-Maestrichtian assemblage which is characterized by abundant Cromyodruppa Iconcentrica, Dictyomitra multicostata, and Protostichocapsa stocki. Abundant Pseudodictyomitra pentacolaensis and Diacanthocapsa sp. 1, on the other hand, are the main constituents of the assemblage from the latest Aptian/earliest Albian diatomite of Hole 693B. These represent the oldest and the highest-latitude reported radiolarian occurrences from the Atlantic sector of the Antarctic Ocean. The assemblages are marked by their low diversity and an absence of low- to mid-latitude zonal indices.
Resumo:
During the Paleocene-Eocene Thermal Maximum (PETM), rapid release of isotopically light C to the ocean-atmosphere system elevated the greenhouse effect and warmed temperatures by 5-7 °C for 105 yr. The response of the planktic ecosystems and productivity to the dramatic climate changes of the PETM may represent a significant feedback to the carbon cycle changes, but has been difficult to document. We examine Sr/Ca ratios in calcareous nannofossils in sediments spanning the PETM in three open ocean sites as a new approach to examine productivity and ecological shifts in calcifying plankton. The large heterogeneity in Sr/Ca among different nannofossil genera indicates that nannofossil Sr/Ca reflects primary productivity-driven geochemical signals and not diagenetic overprinting. Elevated Sr/Ca ratios in several genera and constant ratios in other genera suggest increased overall productivity in the Atlantic sector of the Southern Ocean during the PETM. Dominant nannofossil genera in tropical Atlantic and Pacific sites show Sr/Ca variations during the PETM which are comparable to background variability prior to the PETM. Despite acidification of the ocean there was not a productivity crisis among calcifying phytoplankton. We use the Pandora ocean box model to explore possible mechanisms for PETM productivity change. If independent proxy evidence for more stratified conditions in the Southern Ocean during the PETM is robust, then maintenance of stable or increased productivity there likely reflects increased nutrient inventories of the ocean. Increased nutrient inventories could have resulted from climatically enhanced weathering and would have important implications for burial rates of organic carbon and stabilization of climate and the carbon cycle.
Resumo:
Basalts recovered along the Reunion hotspot track on Ocean Drilling Program (ODP) Leg 115 range in age from 34 Ma at Site 706 to 64 Ma at Site 707. They have undergone various degrees of secondary alteration. Within single holes the amount of alteration can vary from a few percent to near complete replacement of phenocrysts and groundmass by secondary minerals. Olivine appears to be the most susceptible to alteration and in some sections it is the only mineral altered. In other sections, olivine, pyroxene and plagioclase phenocrysts, and groundmass have been completely replaced by secondary minerals. Clays are the predominant form of secondary mineralization. In addition to replacing olivine, pyroxene, glass, and groundmass, clays have filled veins, vesicles, and voids. Minor amounts of calcite, zeolites, and K-feldspar were also detected. The clays that filled vesicles and veins often show color zonations of dark, opaque bands near the edges that grade into tan or green transparent regions in the centers of the veins. The electron microprobe was used to obtain chemical analyses of these veins as well as to characterize isolated clays that replaced specific minerals and filled voids and vesicles.
Resumo:
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge (Rabinowitz and LaBrecque, 1979 doi:10.1029/JB084iB11p05973, Moore et al. (1983 doi:10.1130/0016-7606(1983)94<907:TWRTDS>2.0.CO;2). The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and coraistent with formation at the paleo mid-ocean ridge (Moore et al., 1983). The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other. The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 207Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high 87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan da Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher 143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing of depleted and enriched end member melts or partial melting of an inhomogeneous, variably enriched mantle source. However, observed Zr-Ba-Nb-Y interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.
Resumo:
Shipboard examination of volcanic and sedimentary strata at Site 786 suggested that at least four types of breccias are present: flow-top breccias, associated with cooling and breakup on the upper surface of lava flows; autobreccias, formed by in-situ alteration at the base of flows; fault-gouge breccias; and true sedimentary breccias derived from weathering and erosion of underlying flows. It is virtually impossible to assess the origin of breccia matrix by textural and mineralogical analyses alone. However, it is fundamental for our understanding of breccia provenance to determine the source component of the matrix material. Whether the matrix is uniquely clastderived can be determined by geochemical fingerprinting. Trace elements that are immobile during weathering and alteration do not change their relative abundances. A contribution to the matrix from any source with an immobile trace element signature different from that of the clasts would appear as a perturbation of the trace element signature of the matrix. Trace element analysis of bulk samples from clasts and matrix material in individual breccia units was undertaken in a fashion similar to that used by Brimhall and Dietrich (1987, doi:10.1016/0016-7037(87)90070-6) in analyzing soil provenance: (1) to help distinguish between sedimentary and volcanic breccias, (2) to determine the degree of mixing and depth of erosion in sedimentary breccias, and (3) to analyze the local provenance of the individual breccia components (matrix and clasts). The following elements were analyzed by X-ray fluorescence (XRF): Rb, Sr, Ba, U, Zr, Cu, Zn, Ti, Cr, and V. Of these elements, Zr and Ti probably exhibit truly immobile behavior (Humphris and Thompson, 1978, doi:10.1016/0016-7037(78)90222-3 ). The remaining elements are useful as a reference for the extent of compositional change during the formation of matrix material (Brimhall and Dietrich, 1987, doi:10.1016/0016-7037(87)90070-6).
Resumo:
We investigated the influences of temperature, salinity and pH on the calcium isotope as well as trace and minor element (uranium, strontium, magnesium) to Ca ratios on calcium carbonate cysts of the calcareous dinoflagellate species Thoracosphaera heimii grown in laboratory cultures. The natural habitat of this species is the photic zone (preferentially at the chlorophyll maximum depth) of temperate to tropical oceans, and it is abundant in deep-sea sediments over the entire Cenozoic. In our experiments, temperatures ranged from 12 to 30 °C, salinity from 36.5 to 38.8 and pH from 7.9 to 8.4. The delta44/40Ca of T. heimii cysts resembles that of other marine calcifiers, including coccolithophores, foraminifers and corals. However, its temperature sensitivity is considerably smaller and statistically insignificant, and T. heimii might serve as a recorder of changes in seawater delta44/40Ca over geologic time. The Sr/Ca ratios of T. heimii cysts show a pronounced temperature sensitivity (0.016 mmol/mol °C**-1) and have the potential to serve as a palaeo-sea surface temperature proxy. No clear temperature- and pH-dependences were observed for Mg/Ca. U/Ca seems to be influenced by temperature and pH, but the correlations change sign at 23 °C and pH 8.2, respectively.
Resumo:
We present the first continuous records from 0 to 5 Ma (in 0.333 m.y. integrated time steps) of paired boron/calcium (B/Ca) ratios and boron isotopes (d11B) in the planktonic foraminifera Globogerinoides sacculifer (without sacc) from a site in the western equatorial Pacific Ocean (Ocean Drilling Program Site 806). These measurements, the first made in conjunction with calcification temperature (magnesium/calcium ratios) and average shell mass measurements, indicate that pH is not the sole environmental variable controlling B in planktonic foraminiferal calcite. Our data are consistent with calcification temperature exerting a primary control on B concentration and isotopic composition in planktonic foraminifera. If so, calcification temperature must be taken into account if pH for past oceans and atmospheric pCO2 are to be estimated from B isotope measurements in foraminiferal calcite. Doing so will substantially increase the uncertainty of pH estimates. Although this work was designed as a temporal study, its results define new aspects of calibrating the d11B paleo-pH tracer.