960 resultados para Sports science
Resumo:
Effects of physical activity interventions in youth: A review. International SportMed Journal. Vol.2 No.5 2001. The purpose of this paper is to review the peer-reviewed literature pertinent to physical activity interventions for children and adolescents. In order to provide a more quantitative conclusion regarding the effectiveness of these interventions, a meta-analytic approach was utilized in which effect sizes (the efficacy of each intervention or magnitude of the intervention effect was expressed as a standardized effect size, which represents the influence of the treatment or intervention on the dependent variable) from each study are pooled to provide a global estimate of effectiveness. A search of the relevant peer-reviewed literature was conducted using several computer-based databases, including MEDLINE, PYSCHLIT, SOCIAL SCIENCE INDEX, and SPORTS DISCUS. Manual searches were also made using the reference lists from recovered articles. Applying strict criteria for quality of design and assessment of physical activity, 10 studies were located, yielding a total of 44 effect sizes. The mean effect size was 0.47 (95% C.I. 0.28 – 0.66) suggesting that interventions have produced moderate increases in physical activity behavior. Effect sizes ranged from –0.61 to 2.5. Interventions focusing on increasing the amount of physical activity performed during regular physical education were more effective than those targeting overall levels of physical activity. Interventions were almost entirely school-based. Accordingly, the development and evaluation of community-based approaches for promoting physical activity among young people, especially older adolescents, remains an urgent priority for future research.
Resumo:
Objective To examine the relationship between sports participation and health-related behaviors among high school students. Design Cross-sectional design using data from the 1997 Centers for Disease Control and Prevention Youth Risk Behavior Survey. Participants A nationally representative sample of 14221 US high school students. Main Outcome Measures Prevalence of sports participation among males and females from 3 ethnic groups and its associations with other health behaviors, including diet, tobacco use, alcohol and illegal drug use, sexual activity, violence, and weight loss practices. Results Approximately 70% of male students and 53% of female students reported participating on 1 or more spores teams in school and/or nonschool settings; rates varied substantially by age, sex, and ethnicity. Male sports participants were more likely than male nonparticipants to report fruit and vegetable consumption on the previous day and less likely to report cigarette smelting, cocaine and other illegal drug use, and trying to lose weight. Compared with female nonparticipants, female sports participants were more likely to report consumption of vegetables on the previous day and less likely to report having sexual intercourse in the past 3 months. Among white males and females, several other beneficial health behaviors were associated with sports participation. A few associations with. negative health behaviors were observed in African American and Hispanic subgroups. Conclusion Sports participation is highly prevalent among US high school students, and is associated with numerous positive health behaviors and few negative health behaviors.
Resumo:
Obesity rates are increasing in children of all ages, and reduced physical activity (PA) is a likely contributor to this trend. Little is known about the physical activity behavior of preschool-age children, or about the influence of preschool attendance on physical activity. Purpose The purpose of this study was to quantify the physical activity levels of children attending a center-based half-day preschool program. Methods Forty-two 3-to-5-year old children (Mean age = 4.0 ± 0.7, 54.8% Male, Mean BMI = 16.5 ± 5.5, Mean BMI %tile = 52.1 ± 33.5) from four class groups (two morning and two afternoon), wore an Actigraph 7164 accelerometer for the entire halfday program (including classroom learning experiences, snack and recess time) 2 times per week, for 10 weeks (20 activity monitoring records in total). Activity counts for each 5-sec interval were uploaded to a customized data reduction program to determine total counts, minutes of moderate PA (MPA) (3–5.9 METs), and minutes of vigorous PA (VPA) (> = 6 METs) per session. Counts were categorized as either MPA or VPA using the cutpoints developed by Sirard and colleagues (2001). Results Across the four 2.5 hour programs, the average MPA, VPA and total counts (× 103) were 12.4 ± 3.1 minutes, 18.3 ± 4.6 minutes, and 171.1 ± 29.7 counts, respectively. Thus, on average, children accumulated just over 12 minutes of moderateto-vigorous PA per hour of program attendance. The PA variables did not differ significantly by gender, weight status, or time of day. There were, however, significant age differences, with 3-year-olds exhibiting significantly less PA than their 4- and 5-year-old counterparts. Conclusions These results suggest that young children are relatively lowactive while attending preschool. Accordingly, interventions to increase movement opportunities during the preschool day are warranted.
Resumo:
Purpose The aim of this study was to assess the predictive validity of three accelerometer prediction equations (Freedson et aL, 1997; Trost et aL, 1998; Puyau et al., 2002) for energy expenditure (EE) during overland walking and running in children and adolescents. Methods 45 healthy children and adolescents aged 10-18 completed the following protocol, each task 5-mins in duration, with a 5-min rest period in between; walking normally; walking briskly; running easily and running fast. During each task participants wore MTI (WAM 7164) Actigraphs on the left and right hips. VO2 was monitored breath by breath using the Cosmed K4b2 portable indirect calorimetry system. For each prediction equation, difference scores were calculated as EE measured minus EE predicted. The percentage of 1-min epochs correctly categorized as light (<3 METs), moderate (3-5.9 METs), and vigorous (≥6 METS) was also calculated. Results The Freedson and Trost equations consistently overestimated MET level. The level of overestimation was statistically significant across all tasks for the Freedson equation, and was significant for only the walking tasks for the Trost equation. The Puyau equation consistently underestimated AEE with the exception of the walking normally task. In terms of categorisation, the Freedson equation (72.8% agreement) demonstrated better agreement than the Puyau (60.6%). Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overland walking and running. However, the cut points generated by these equations maybe useful for classifying activity as either, light, moderate, or vigorous.
Resumo:
1. Stream ecosystem health monitoring and reporting need to be developed in the context of an adaptive process that is clearly linked to identified values and objectives, is informed by rigorous science, guides management actions and is responsive to changing perceptions and values of stakeholders. To be effective, monitoring programmes also need to be underpinned by an understanding of the probable causal factors that influence the condition or health of important environmental assets and values. This is often difficult in stream and river ecosystems where multiple stressors, acting at different spatial and temporal scales, interact to affect water quality, biodiversity and ecosystem processes. 2. In this article, we describe the development of a freshwater monitoring programme in South East Queensland, Australia, and how this has been used to report on ecosystem health at a regional scale and to guide investments in catchment protection and rehabilitation. We also discuss some of the emerging science needs to identify the appropriate scale and spatial arrangement of rehabilitation to maximise river ecosystem health outcomes and, at the same time, derive other benefits downstream. 3. An objective process was used to identify potential indicators of stream ecosystem health and then test these across a known catchment land-use disturbance gradient. From the 75 indicators initially tested, 22 from five indicator groups (water quality, ecosystem metabolism, nutrient cycling, invertebrates and fish) responded strongly to the disturbance gradient, and 16 were subsequently recommended for inclusion in the monitoring programme. The freshwater monitoring programme was implemented in 2002, funded by local and State government authorities, and currently involves the assessment of over 120 sites, twice per year. This information, together with data from a similar programme on the region's estuarine and coastal marine waters, forms the basis of an annual report card that is presented in a public ceremony to local politicians and the broader community. 4. Several key lessons from the SEQ Healthy Waterways Programme are likely to be transferable to other regional programmes aimed at improving aquatic ecosystem health, including the importance of a shared common vision, the involvement of committed individuals, a cooperative approach, the need for defensible science and effective communication. 5. Thematic implications: this study highlights the use of conceptual models and objective testing of potential indicators against a known disturbance gradient to develop a freshwater ecosystem health monitoring programme that can diagnose the probable causes of degradation from multiple stressors and identify the appropriate spatial scale for rehabilitation or protection. This approach can lead to more targeted management investments in catchment protection and rehabilitation, greater public confidence that limited funds are being well spent and better outcomes for stream and river ecosystem health.
Resumo:
This thesis studied the emotional climate (EC) of a pre-service science teachers' class in Bhutan. It examined the types of activities students engaged in and the relationship between the tutor and students whose interactions produced both positive and negative EC in the class. The major finding was that the activities involving students' presentations using video clips and models, group activity, and coteaching valenced the class EC positively. Negative EC was identified when the tutor ignored students' responses, during formal lectures, and when the tutor was uncertain of the subject knowledge. The replication of activities that produce positive EC by other Bhutanese tutors may improve the standard of science education in the country.
Resumo:
Molecular biology is a scientific discipline which has changed fundamentally in character over the past decade to rely on large scale datasets – public and locally generated - and their computational analysis and annotation. Undergraduate education of biologists must increasingly couple this domain context with a data-driven computational scientific method. Yet modern programming and scripting languages and rich computational environments such as R and MATLAB present significant barriers to those with limited exposure to computer science, and may require substantial tutorial assistance over an extended period if progress is to be made. In this paper we report our experience of undergraduate bioinformatics education using the familiar, ubiquitous spreadsheet environment of Microsoft Excel. We describe a configurable extension called QUT.Bio.Excel, a custom ribbon, supporting a rich set of data sources, external tools and interactive processing within the spreadsheet, and a range of problems to demonstrate its utility and success in addressing the needs of students over their studies.
Resumo:
Is there a crisis in Australian science and mathematics education? Declining enrolments in upper secondary Science and Mathematics courses have gained much attention from the media, politicians and high-profile scientists over the last few years, yet there is no consensus amongst stakeholders about either the nature or the magnitude of the changes. We have collected raw enrolment data from the education departments of each of the Australian states and territories from 1992 to 2012 and analysed the trends for Biology, Chemistry, Physics, two composite subject groups (Earth Sciences and Multidisciplinary Sciences), as well as entry, intermediate and advanced Mathematics. The results of these analyses are discussed in terms of participation rates, raw enrolments and gender balance. We have found that the total number of students in Year 12 increased by around 16% from 1992 to 2012 while the participation rates for most Science and Mathematics subjects, as a proportion of the total Year 12 cohort, fell (Biology (-10%), Chemistry (-5%), Physics (-7%), Multidisciplinary Science (-5%), intermediate Mathematics (-11%), advanced Mathematics (-7%) in the same period. There were increased participation rates in Earth Sciences (+0.3%) and entry Mathematics (+11%). In each case the greatest rates of change occurred prior to 2001 and have been slower and steadier since. We propose that the broadening of curriculum offerings, further driven by students' self-perception of ability and perceptions of subject difficulty and usefulness, are the most likely cause of the changes in participation. While these continuing declines may not amount to a crisis, there is undoubtedly serious cause for concern.
Resumo:
This article introduces a deterministic approach to using low-temperature, thermally non-equilibrium plasmas to synthesize delicate low-dimensional nanostructures of a small number of atoms on plasma exposed surfaces. This approach is based on a set of plasma-related strategies to control elementary surface processes, an area traditionally covered by surface science. Major issues related to balanced delivery and consumption of building units, appropriate choice of process conditions, and account of plasma-related electric fields, electric charges and polarization effects are identified and discussed in the quantum dot nanoarray context. Examples of a suitable plasma-aided nanofabrication facility and specific effects of a plasma-based environment on self-organized growth of size- and position-uniform nanodot arrays are shown. These results suggest a very positive outlook for using low-temperature plasma-based nanotools in high-precision nanofabrication of self-assembled nanostructures and elements of nanodevices, one of the areas of continuously rising demand from academia and industry.
Resumo:
The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study we explore the emotional climates, that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality learning experiences for preservice science teachers. Theories related to the sociology of emotions informed our analyses from data sources such as preservice teachers’ perceptions of the emotional climate of their class, emotional facial expressions, classroom conversations, and cogenerative dialogue. The major outcome from our analyses was that even though preservice teachers reported high positive emotional climate during the professor’s science demonstrations, they also valued the professor’s in the moment reflections on her teaching that were associated with low emotional climate ratings. We co-relate emotional climate data and preservice teachers’ comments during cogenerative dialogue to expand our understanding of high quality experiences and emotional climate in science teacher education. Our study also contributes refinements to research perspectives on emotional climate.
Resumo:
Multiscale hybrid simulations that bridge the nine-order-of-magnitude spatial gap between the macroscopic plasma nanotools and microscopic surface processes on nanostructured solids are described. Two specific examples of carbon nanotip-like and semiconductor quantum dot nanopatterns are considered. These simulations are instrumental in developing physical principles of nanoscale assembly processes on solid surfaces exposed to low-temperature plasmas.
Resumo:
Purpose This study explores recent claims that humans exhibit a minimum cost of transport (CoTmin) for running which occurs at an intermediate speed, and assesses individual physiological, gait and training characteristics. Methods Twelve healthy participants with varying levels of fitness and running experience ran on a treadmill at six self-selected speeds in a discontinuous protocol over three sessions. Running speed (km[middle dot]hr-1), V[spacing dot above]O2 (mL[middle dot]kg-1[middle dot]km-1), CoT (kcal[middle dot]km-1), heart rate (beats[middle dot]min-1) and cadence (steps[middle dot]min-1) were continuously measured. V[spacing dot above]O2 max was measured on a fourth testing session. The occurrence of a CoTmin was investigated and its presence or absence examined with respect to fitness, gait and training characteristics. Results Five participants showed a clear CoTmin at an intermediate speed and a statistically significant (p < 0.05) quadratic CoT-speed function, while the other participants did not show such evidence. Participants were then categorized and compared with respect to the strength of evidence for a CoTmin (ClearCoTmin and NoCoTmin). The ClearCoTmin group displayed significantly higher correlation between speed and cadence; more endurance training and exercise sessions per week; than the NoCoTmin group; and a marginally non-significant but higher aerobic capacity. Some runners still showed a CoTmin at an intermediate speed even after subtraction of resting energy expenditure. Conclusion The findings confirm the existence of an optimal speed for human running, in some but not all participants. Those exhibiting a COTmin undertook a higher volume of running, ran with a cadence that was more consistently modulated with speed, and tended to be aerobically fitter. The ability to minimise the energetic cost of transport appears not to be ubiquitous feature of human running but may emerge in some individuals with extensive running experience.
Resumo:
For Design Science Research (DSR) to gain wide credence as a research paradigm in Information Systems (IS), it must contribute to theory. “Theory cannot be improved until we improve the theorizing process, and we cannot improve the theorizing process until we describe it more explicitly, operate it more self-consciously, and decouple it from validation more deliberately” (Weick 1989, p. 516). With the aim of improved design science theorizing, we propose a DSR abstraction-layers framework that integrates, interlates, and harmonizes key methodological notions, primary of which are: 1) the Design Science (DS), Design Research (DR), and Routine Design (RD) distinction (Winter 2008); 2) Multi Grounding in IS Design Theory (ISDT) (Goldkuhl & Lind 2010); 3) the Idealized Model for Theory Development (IM4TD) (Fischer & Gregor 2011); and 4) the DSR Theorizing Framework (Lee et al. 2011). Though theorizing, or the abstraction process, has been the subject of healthy discussion in DSR, important questions remain. With most attention to date having focused on theorizing for Design Research (DR), a key stimulus of the layered view was the realization that Design Science (DS) produces abstract knowledge at a higher level of generality. The resultant framework includes four abstraction layers: (i) Design Research (DR) 1st Abstract Layer, (ii) Design Science (DS) 2nd Abstract Layer, (iii) DSR Incubation 3rd Layer, and (iv) Routine Design 4th Layer. Differentiating and inter-relating these layers will aid DSR researchers to discover, position, and amplify their DSR contributions. Additionally, consideration of the four layers can trigger creative perspectives that suggest unplanned outputs. The first abstraction layer, including its alternative patterns of activity, is well recognized in the literature. The other layers, however, are less well recognized; and the integrated representation of layers is novel.
Resumo:
This paper presents Australian results from the Interests and Recruitment in Science (IRIS) study with respect to the influence of STEM-related mass media, including science fiction, on students’ decisions to enrol in university STEM courses. The study found that across the full cohort (N=2999), students tended to attribute far greater influence to science-related documentaries/channels such as Life on Earth and the Discovery Channel, etc. than to science-fiction movies or STEM-related TV dramas. Males were more inclined than females to consider science fiction/fantasy books and films and popular science books/magazines as having been important in their decisions. Students taking physics/astronomy tended to rate the importance of science fiction/fantasy books and films higher than students in other courses. The implications of these results for our understanding of influences on STEM enrolments are discussed.