978 resultados para Spectrophotometry, Infrared
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report on some recent solutions of the Dyson-Schwinger equations for the infrared behavior of the gluon propagator and coupling constant, discussing their differences and proposing that these different behaviors can be tested through hadronic phenomenology. We discuss which kind of phenomenological tests can be applied to the gluon propagator and coupling constant, how sensitive they are to the infrared region of momenta and what specific solution is preferred by the experimental data.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Methyl alcohol is the most important lasing molecule in the Far-Infrared (FIR) spectral region, and the most widely used for investigation and for applications. Since the last critical review of 1984, over seventy papers have been published dealing with the FIR laser lines and the infrared spectroscopy of CH3OH. In 1984 we could list about 330 FIR laser lines, 98 of which were measured in frequency and 105 assigned. Since then more than 70 papers were published increasing the number of the known laser lines to 575 (103 measured in frequency). Also the FIR and IR spectroscopy was largely improved thanks to the analysis of high resolution FT spectra, and the number of the correctly assigned laser lines has been increased to 224. The wavenumbers of the assigned lines can now be predicted with an accuracy of about 0.001 cm-1 or better, thus approaching the accuracy of the experimental frequency measurements.
Resumo:
We report 18 new laser lines from (CH3OH)-C-13 generated in an optically pumped far-infrared laser; the laser lines are in the range of 54.2-420 mu m and are all characterized in wavelength, polarization relative to the pumping CO2 radiation, and pump offset relative to the CO2 center frequency, the frequencies of seven of these new lines along with 10 previously reported lines were measured by an accurate heterodyne technique, mixing them in a metal-insulator-metal (MIM) point contact diode, with another laser line of known frequency.
Resumo:
The structure of the two azide-complexes, [Cu(N-3)(2)(N,N-diEten)](2) and [Cu(N-3)(2)(tmeen)](2), N,N-diEten=N,N-diethylethylenediamine; tmeen=N,N,N',N'-tetramethyethylenediamine in solutions of acetonitrile, acetone, tetrahydrofuran, chloroform and dichloromethane, were investigated by infrared spectroscopy. The data show that the complex [Cu(N-3)(2)(N,N-diEten)](2) mantains its structure in solution, while that for [Cu(N-3)(2)(tmeen)](2) is modified.
Resumo:
The IR-spectrum of the isonicotinamide molecule (C(2)H(2)NC(3)H(2)CONH(2)) is studied by means of theoretical and experimental methods. For an appropriate representation of the molecular environment, Gaussian basis sets to the atoms of these molecule are built and then contracted (5s and 6s5p). For evaluation of the quality of contracted basis sets in molecular calculations, we have accomplished calculations of the total and the orbital (HOMO and HOMO-1) energies in the HF-Roothaan method for the molecule studied. The results obtained with the contracted basis sets [5s/6s5p] are compared to values obtained with our (21s/22s14p) basis sets and with those obtained with the D95, 6-31G, and 6-311G basis sets from literature. It was added one d polarization function in the [6s5p] contracted basis set for C ((3)P) atom, which was used in combination with the basis sets for H ((2)S), N ((4)S). and O((3)P) atoms to calculate the infrared spectrum of isonicotinamide. The calculations were performed at B3LYP level and were compared to corresponding experimental values also obtained in our laboratory. The theoretical results in comparison with the corresponding experimental values indicate a very good interpretation of the IR-spectrum and that the strategy of an appropriate representation of the molecular environment through the basis sets is an effective alternative to investigate vibrational theoretical properties of the nicotinamide molecule. (c) 2006 Published by Elsevier B.V.
Resumo:
Fourier transform and IR optoacoustic absorption data of (CD3OH)-C-13 were used to search for new FIR laser lines. We have used a waveguide CO2 laser of 300 MHz tunability as the optical pumping source. We report the observation and characterization of 13 new lines. Three of these lines are associated with absorbing transitions appertaining to the weak (CD3)-C-13 asymmetric bending mode.
Resumo:
Cassava starch has been shown to make transparent and colorless flexible films without any previous chemical treatment. The functional properties of edible films are influenced by starch properties, including chain conformation, molecular bonding, crystallinity, and water content. Fourier-transform infrared (FTIR) spectroscopy in combination with attenuated total reflectance (ATR) has been applied for the elucidation of the structure and conformation of carbohydrates. This technique associated with chemometric data processing could indicate the relationship between the structural parameters and the functional properties of cassava starch-based edible films. Successful prediction of the functional properties values of the starch-based films was achieved by partial least squares regression data. The results showed that presence of the hydroxyl group on carbon 6 of the cyclic part of glucose is directly correlated with the functional properties of cassava starch films.
Resumo:
A new trinuclear platinum(II) complex with cysteine of composition [Pt(C3H6NO2S)Cl](3)center dot(C2H6SO)(3) was obtained and structurally characterized by X-ray diffraction and infrared analysis. The compound crystallizes in the trigonal system, space group R3, and is described in a hexagonal cell with a=17.739(1), c=9.531(1) and Z=3. Cysteine is coordinated to Pt(II) through the nitrogen and sulphur atoms. Each cysteine sulphur bridges between two metal atoms. A square planar coordination sphere of platinum is completed by a chlorine atom. The complex is soluble in dimethyl sulfoxide.
Resumo:
The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD, (CH3OH)-C-13, (CD3OH)-C-13, (CD3OD)-C-13, (CH3OH)-O-18, CH2DOH, CHD2OH and CH2DOD.
Resumo:
Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited by CW laser radiation at 1540 nm and under cryogenic temperatures is reported. Intense upconversion emission signals around 530, 550 and 660 nm corresponding to the H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground state were generated and studied as a function of the laser intensity and temperature. The upconversion excitation mechanism of the Er3+ ions emitting energy levels was accomplished via stepwise multiphoton absorption. The green upconversion luminescence exhibited a fivefold intensity enhancement when the temperature of the sample was varied in the range between 5 and 300 K. A maximum green upconversion intensity was attained around 120 K and a steady decreasing behavior for higher temperatures up to 300 K was observed. A model based upon conventional rate equations was used to model the observed temperature evolution of the upconversion luminescence. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Upconversion luminescence and thermal effects in Pr3+/Yb3+- and Er3+/Yb3+-codoped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses excited by CW infrared radiation at 1.064 mum is reported. Generation of intense green and red fluorescence emission in Er3+/Yb3+-codoped samples and appreciable upconversion luminescence in the wavelength region of 450-680 nm in Pr3+/Yb3+-codoped samples is observed. Temperature-induced enhancement of X12 in the upconversion efficiency in Er3+/Yb3+- and X10 in the Pr3+/Yb3+-doped samples is demonstrated. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Intense red upconversion emission around 650 nm in PbGeO3-PbF2-CdF2 transparent glass ceramic containing beta-PbF2:Ho3+ nanocrystals, is presented. The holmium-doped vitroceramic samples were excited by a 980 nm diode laser source. The 650 nm upconversion signal was assigned to the F-5(5) --> I-5(8) transition of holmium ions. Very low intensity signals around 490 and 540 nm corresponding to the F-5(2,3) --> I-5(8) and S-4(2), F-5(4) --> I-5(8) transitions, respectively, were also detected. The upconversion excitation mechanism was achieved through a combination of stepwise phonon-assisted multiphoton absorption, cross-relaxation processes involving pairs of holmium ions, and excited-state absorption. Using a diode laser pump source around 850 nm green upconversion emission around 540 nm was the observed predominant signal. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Morphology of three samples of alumina are investigated. Infrared spectra are analysed by use of their morphology through the theory of average dielectric constant. Crystal shape is obtained from X-ray diffraction patterns by reflection intensity ratio. In the case of electron scanning microscopy, shape factor was obtained by an average axial ratio of the particles. Comparison of results show that there is agreement among these techniques and infrared spectra can be used to determine the morphology of alumina particles from 2.7 to 10 mu m, even for heterogeneous samples. (C) 1999 Elsevier B.V. B.V. All rights reserved.