982 resultados para Space-Frequency Block Codes
Resumo:
OBJECTIVE: To test a method that allows automatic set-up of the ventilator controls at the onset of ventilation. DESIGN: Prospective randomized crossover study. SETTING: ICUs in one adult and one children's hospital in Switzerland. PATIENTS: Thirty intubated stable, critically ill patients (20 adults and 10 children). INTERVENTIONS: The patients were ventilated during two 20-min periods using a modified Hamilton AMADEUS ventilator. During the control period the ventilator settings were chosen immediately prior to the study. During the other period individual settings were automatically determined by the ventilatior (AutoInit). MEASUREMENTS AND RESULTS: Pressure, flow, and instantaneous CO2 concentration were measured at the airway opening. From these measurements, series dead space (V(DS)), expiratory time constant (RC), tidal volume (VT, total respiratory frequency (f(tot), minute ventilation (MV), and maximal and mean airway pressure (Paw, max and Paw, mean) were calculated. Arterial blood gases were analyzed at the end of each period. Paw, max was significantly less with the AutoInit ventilator settings while f(tot) was significantly greater (P < 0.05). The other values were not statistically significant. CONCLUSIONS: The AutoInit ventilator settings, which were automatically derived, were acceptable for all patients for a period of 20 min and were not found to be inferior to the control ventilator settings. This makes the AutoInit method potentially useful as an automatic start-up procedure for mechanical ventilation.
Resumo:
Geographic differences in frequency and azole resistance among Candida glabrata may impact empiric antifungal therapy choice. We examined geographic variation in isolation and azole susceptibility of C. glabrata. We examined 23 305 clinical isolates of C. glabrata during ARTEMIS DISK global surveillance. Susceptibility testing to fluconazole and voriconazole was assessed by disk diffusion, and the results were grouped by geographic location: North America (NA) (2470 isolates), Latin America (LA) (2039), Europe (EU) (12 439), Africa and the Middle East (AME) (728), and Asia-Pacific (AP) (5629). Overall, C. glabrata accounted for 11.6% of 201 653 isolates of Candida and varied as a proportion of all Candida isolated from 7.4% in LA to 21.1% in NA. Decreased susceptibility (S) to fluconazole was observed in all geographic regions and ranged from 62.8% in AME to 76.7% in LA. Variation in fluconazole susceptibility was observed within each region: AP (range, 50-100% S), AME (48-86.9%), EU (44.8-88%), LA (43-92%), and NA (74.5-91.6%). Voriconazole was more active than fluconazole (range, 82.3-84.2% S) with similar regional variation. Among 22 sentinel sites participating in ARTEMIS from 2001 through 2007 (84 140 total isolates, 8163 C. glabrata), the frequency of C. glabrata isolation increased in 14 sites and the frequency of fluconazole resistance (R) increased in 11 sites over the 7-year period of study. The sites with the highest cumulative rates of fluconazole R were in Poland (22% R), the Czech Republic (27% R), Venezuela (27% R), and Greece (33% R). C. glabrata was most often isolated from blood, normally sterile body fluids and urine. There is substantial geographic and institutional variation in both frequency of isolation and azole resistance among C. glabrata. Prompt species identification and fluconazole susceptibility testing are necessary to optimize therapy for invasive candidiasis.
Resumo:
The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.
Resumo:
We compared the extent and origin of muscle fatigue induced by short-pulse-low-frequency [conventional (CONV)] and wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation. We expected CONV contractions to mainly originate from depolarization of axonal terminal branches (spatially determined muscle fiber recruitment) and WPHF contractions to be partly produced via a central pathway (motor unit recruitment according to size principle). Greater neuromuscular fatigue was, therefore, expected following CONV compared with WPHF. Fourteen healthy subjects underwent 20 WPHF (1 ms-100 Hz) and CONV (50 μs-25 Hz) evoked isometric triceps surae contractions (work/rest periods 20:40 s) at an initial target of 10% of maximal voluntary contraction (MVC) force. Force-time integral of the 20 evoked contractions (FTI) was used as main index of muscle fatigue; MVC force loss was also quantified. Central and peripheral fatigue were assessed by voluntary activation level and paired stimulation amplitudes, respectively. FTI in WPHF was significantly lower than in CONV (21,717 ± 11,541 vs. 37,958 ± 9,898 N·s P<0,001). The reductions in MVC force (WPHF: -7.0 ± 2.7%; CONV: -6.2 ± 2.5%; P < 0.01) and paired stimulation amplitude (WPHF: -8.0 ± 4.0%; CONV: -7.4 ± 6.1%; P < 0.001) were similar between conditions, whereas no change was observed for voluntary activation level (P > 0.05). Overall, our results showed a different motor unit recruitment pattern between the two neuromuscular electrical stimulation modalities with a lower FTI indicating greater muscle fatigue for WPHF, possibly limiting the presumed benefits for rehabilitation programs.
Resumo:
Background: Although CD4 cell count monitoring is used to decide when to start antiretroviral therapy in patients with HIV-1 infection, there are no evidence-based recommendations regarding its optimal frequency. It is common practice to monitor every 3 to 6 months, often coupled with viral load monitoring. We developed rules to guide frequency of CD4 cell count monitoring in HIV infection before starting antiretroviral therapy, which we validated retrospectively in patients from the Swiss HIV Cohort Study.Methodology/Principal Findings: We built up two prediction rules ("Snap-shot rule" for a single sample and "Track-shot rule" for multiple determinations) based on a systematic review of published longitudinal analyses of CD4 cell count trajectories. We applied the rules in 2608 untreated patients to classify their 18 061 CD4 counts as either justifiable or superfluous, according to their prior >= 5% or < 5% chance of meeting predetermined thresholds for starting treatment. The percentage of measurements that both rules falsely deemed superfluous never exceeded 5%. Superfluous CD4 determinations represented 4%, 11%, and 39% of all actual determinations for treatment thresholds of 500, 350, and 200x10(6)/L, respectively. The Track-shot rule was only marginally superior to the Snap-shot rule. Both rules lose usefulness for CD4 counts coming near to treatment threshold.Conclusions/Significance: Frequent CD4 count monitoring of patients with CD4 counts well above the threshold for initiating therapy is unlikely to identify patients who require therapy. It appears sufficient to measure CD4 cell count 1 year after a count > 650 for a threshold of 200, > 900 for 350, or > 1150 for 500x10(6)/L, respectively. When CD4 counts fall below these limits, increased monitoring frequency becomes advisable. These rules offer guidance for efficient CD4 monitoring, particularly in resource-limited settings.
Resumo:
Rockfall hazard zoning is usually achieved using a qualitative estimate of hazard, and not an absolute scale. In Switzerland, danger maps, which correspond to a hazard zoning depending on the intensity of the considered phenomenon (e.g. kinetic energy for rockfalls), are replacing hazard maps. Basically, the danger grows with the mean frequency and with the intensity of the rockfall. This principle based on intensity thresholds may also be applied to other intensity threshold values than those used in Switzerland for rockfall hazard zoning method, i.e. danger mapping. In this paper, we explore the effect of slope geometry and rockfall frequency on the rockfall hazard zoning. First, the transition from 2D zoning to 3D zoning based on rockfall trajectory simulation is examined; then, its dependency on slope geometry is emphasized. The spatial extent of hazard zones is examined, showing that limits may vary widely depending on the rockfall frequency. This approach is especially dedicated to highly populated regions, because the hazard zoning has to be very fine in order to delineate the greatest possible territory containing acceptable risks.
Resumo:
This paper shows that the distribution of observed consumption is not a good proxy for the distribution of heterogeneous consumers when the current tariff is an increasing block tariff. We use a two step method to recover the "true" distribution of consumers. First, we estimate the demand function induced by the current tariff. Second, using the demand system, we specify the distribution of consumers as a function of observed consumption to recover the true distribution. Finally, we design a new two-part tariff which allows us to evaluate the equity of the existence of an increasing block tariff.
Resumo:
We develop a setting with weak intellectual property rights, where firms' boundaries, location and knowledge spillovers are endogenous. We have two main results. The first one is that, if communication costs increase with distance, entrepreneurs concerned about information leakage have a benefit from locating away from the industry center: distance is an obstacle to collusive trades between members andnon-members. The second result is that we identify a trade-off for the entrepreneur between owning a facility (controlling all its characteristics) and sharing a facility with a {\it non-member} (an agent not involved in production), therefore losing control over some of its characteristics. We focus on ``location" as the relevant characteristic of the facility, but location can be used as a spatial metaphor for other relevant characteristics of the facility. For theentrepreneur, sharing the facility with non-members implies that the latter, as co-owners, know the location (even if they do not have access to it). Knowledge of the location for the co-owners facilitates collusion with employees, what increases leakage. The model yields a benefit for new plants from spatial dispersion (locating at the periphery of the industry), particularly so for new plants of new firms.We relate this result with recent empirical findings on the dynamics of industry location.
Resumo:
This paper presents a dynamic choice model in the attributespace considering rational consumers that discount the future. In lightof the evidence of several state-dependence patterns, the model isfurther extended by considering a utility function that allows for thedifferent types of behavior described in the literature: pure inertia,pure variety seeking and hybrid. The model presents a stationaryconsumption pattern that can be inertial, where the consumer only buysone product, or a variety-seeking one, where the consumer buys severalproducts simultane-ously. Under the inverted-U marginal utilityassumption, the consumer behaves inertial among the existing brands forseveral periods, and eventually, once the stationary levels areapproached, the consumer turns to a variety-seeking behavior. An empiricalanalysis is run using a scanner database for fabric softener andsignificant evidence of hybrid behavior for most attributes is found,which supports the functional form considered in the theory.
Resumo:
A total of 357 house mice (Mus domesticus) from 83 localities uniformly distributed throughout Switzerland were screened for the presence of a homogenously staining region (HSR) on chromosome 1. Altogether 47 mice from 11 localities were HSR/+ or HSR/HSR. One sample of 11 individuals all had an HSR/HSR karyotype. Almost all mice with the variant were collected from the Rhone valley (HSR frequency: 61%) and Val Bregaglia (HSR frequency: 81%). For samples from most of the area of Switzerland, the HSR was absent. There was no strong association between the geographic distribution of the HSR and the areas of occurrence of metacentrics. However, at Chiggiogna the HSR was found on Rb (1.3). Possible explanations for the HSR polymorphism are discussed.
Resumo:
PURPOSE: To report feasibility and potential benefits of high-frequency jet ventilation (HFJV) in tumor ablations techniques in liver, kidney, and lung lesions. METHODS: This prospective study included 51 patients (14 women, mean age 66 years) bearing 66 tumors (56 hepatic, 5 pulmonary, 5 renal tumors) with a median size of 16 ± 8.7 mm, referred for tumor ablation in an intention-to-treat fashion before preoperative anesthesiology visit. Cancellation and complications of HFJV were prospectively recorded. Anesthesia and procedure duration, as well as mean CO2 capnea, were recorded. When computed tomography guidance was used, 3D spacial coordinates of an anatomical target <2 mm in diameter on 8 slabs of 4 slices of 3.75-mm slice thickness were registered. RESULTS: HFJV was used in 41 of 51 patients. Of the ten patients who were not candidate for HFJV, two patients had contraindication to HFJV (severe COPD), three had lesions invisible under HFJV requiring deep inspiration apnea for tumor targeting, and five patients could not have HFJV because of unavailability of a trained anesthetic team. No specific complication or hypercapnia related to HFJV were observed despite a mean anesthetic duration of 2 h and ventilation performed in procubitus (n = 4) or lateral decubitus (n = 6). Measured internal target movement was 0.3 mm in x- and y-axis and below the slice thickness of 3.75 mm in the z-axis in 11 patients. CONCLUSIONS: HFJV is feasible in 80 % of patients allowing for near immobility of internal organs during liver, kidney, and lung tumor ablation.