979 resultados para Space charge.
Resumo:
The validity of the newly proposed `carbon bonding', an interaction where a carbon atom acts as an electrophilic site towards a variety of nucleophiles, has been investigated in the solid state. X-ray charge density analysis provides experimental evidence for this hitherto unexplored interaction and unravels its nature and strength.
Resumo:
Perfect space-time block codes (STBCs) are based on four design criteria-full-rateness, nonvanishing determinant, cubic shaping, and uniform average transmitted energy per antenna per time slot. Cubic shaping and transmission at uniform average energy per antenna per time slot are important from the perspective of energy efficiency of STBCs. The shaping criterion demands that the generator matrix of the lattice from which each layer of the perfect STBC is carved be unitary. In this paper, it is shown that unitariness is not a necessary requirement for energy efficiency in the context of space-time coding with finite input constellations, and an alternative criterion is provided that enables one to obtain full-rate (rate of complex symbols per channel use for an transmit antenna system) STBCs with larger normalized minimum determinants than the perfect STBCs. Further, two such STBCs, one each for 4 and 6 transmit antennas, are presented and they are shown to have larger normalized minimum determinants than the comparable perfect STBCs which hitherto had the best-known normalized minimum determinants.
Resumo:
A Finite Feedback Scheme (FFS) for a quasi-static MIMO block fading channel with finite N-ary delay-free noise-free feedback consists of N Space-Time Block Codes (STBCs) at the transmitter, one corresponding to each possible value of feedback, and a function at the receiver that generates N-ary feedback. A number of FFSs are available in the literature that provably attain full-diversity. However, there is no known full-diversity criterion that universally applies to all FFSs. In this paper a universal necessary condition for any FFS to achieve full-diversity is given, and based on this criterion the notion of Feedback-Transmission duration optimal (FT-optimal) FFSs is introduced, which are schemes that use minimum amount of feedback N for the given transmission duration T, and minimum T for the given N to achieve full-diversity. When there is no feedback (N = 1) an FT-optimal scheme consists of a single STBC, and the proposed condition reduces to the well known necessary and sufficient condition for an STBC to achieve full-diversity. Also, a sufficient criterion for full-diversity is given for FFSs in which the component STBC yielding the largest minimum Euclidean distance is chosen, using which full-rate (N-t complex symbols per channel use) full-diversity FT-optimal schemes are constructed for all N-t > 1. These are the first full-rate full-diversity FFSs reported in the literature for T < N-t. Simulation results show that the new schemes have the best error performance among all known FFSs.
Resumo:
For a family of Space-Time Block Codes (STBCs) C-1, C-2,..., with increasing number of transmit antennas N-i, with rates R-i complex symbols per channel use, i = 1, 2,..., we introduce the notion of asymptotic normalized rate which we define as lim(i ->infinity) R-i/N-i, and we say that a family of STBCs is asymptotically-good if its asymptotic normalized rate is non-zero, i. e., when the rate scales as a non-zero fraction of the number of transmit antennas. An STBC C is said to be g-group decodable, g >= 2, if the information symbols encoded by it can be partitioned into g groups, such that each group of symbols can be ML decoded independently of the others. In this paper we construct full-diversity g-group decodable codes with rates greater than one complex symbol per channel use for all g >= 2. Specifically, we construct delay-optimal, g-group decodable codes for number of transmit antennas N-t that are a multiple of g2left perpendicular(g-1/2)right perpendicular with rate N-t/g2(g-1) + g(2)-g/2N(t). Using these new codes as building blocks, we then construct non-delay-optimal g-group decodable codes with rate roughly g times that of the delay-optimal codes, for number of antennas N-t that are a multiple of 2left perpendicular(g-1/2)right perpendicular, with delay gN(t) and rate Nt/2(g-1) + g-1/2N(t). For each g >= 2, the new delay-optimal and non-delay- optimal families of STBCs are both asymptotically-good, with the latter family having the largest asymptotic normalized rates among all known families of multigroup decodable codes with delay T <= gN(t). Also, for g >= 3, these are the first instances of g-group decodable codes with rates greater than 1 reported in the literature.
Resumo:
Electric field activated nonlinear transport is investigated in polypyrrole thin film in both in-plane and out-of-plane geometries down to 5 K and strong anisotropy is observed. A morphological model is suggested to explain the anisotropy through inter-chain and intra-chain transport. The deviation from the variable range hopping at low temperature is accounted by fluctuation assisted transport. From Zabrodaskii plots, it is found that electric field can tune the transport from insulating to metallic regime. Glazman-Matveev model is used to describe the nonlinear conduction. Field scaling analysis shows that conductance data at different temperature falls on to a single curve. Nonlinearity exponent, m(T) and characteristic length, L-E are estimated to characterize the transport in both the geometries. (C) 2013 AIP Publishing LLC.
Resumo:
Space-vector-based pulse width modulation (PWM) for a voltage source inverter (VSI) offers flexibility in terms of different switching sequences. Numerical simulation is helpful to assess the performance of a PWM method before actual implementation. A quick-simulation tool to simulate a variety of space-vector-based PWM strategies for a two-level VSI-fed squirrel cage induction motor drive is presented. The simulator is developed using C and Python programming languages, and has a graphical user interface (GUI) also. The prime focus being PWM strategies, the simulator developed is 40 times faster than MATLAB in terms of the actual time taken for a simulation. Simulation and experimental results are presented on a 5-hp ac motor drive.
Resumo:
Semiconductor nanocrystals of different formulations have been extensively studied for use in thin-film photovoltaics. Materials used in such devices need to satisfy the stringent requirement of having large absorption cross sections. Hence, type-II semiconductor nanocrystals that are generally considered to be poor light absorbers have largely been ignored. In this article, we show that type-II semiconductor nanocrystals can be tailored to match the light-absorption abilities of other types of nanostructures as well as bulk semiconductors. We synthesize type-II ZnTe/CdS core/shell nanocrystals. This material is found to exhibit a tunable band gap as well as absorption cross sections that are comparable to (die. This result has significant implications for thin-film photovoltaics, where the use of type-II nanocrystals instead of pure semiconductors can improve charge separation while also providing a much needed handle to regulate device composition.
Resumo:
Adhesion can cause energy losses in asperities or particles coming into dynamic contact resulting in frictional dissipation, even if the deformation occurring is purely elastic. Such losses are of special significance in impact of nanoparticles and friction between surfaces under low contact pressure to hardness ratio. The objective of this work is to study the effect of adhesion during the normal impact of elastic spheres on a rigid half-space, with an emphasis on understanding the mechanism of energy loss. We use finite element method for modeling the impact phenomenon, with the adhesion due to van der Waals force and the short-range repulsion included as body forces distributed over the volume of the sphere. This approach, in contrast with commonly used surface force approximation, helps to model the interactions in a more precise way. We find that the energy loss in impact of elastic spheres is negligible unless there are adhesion-induced instabilities. Significant energy loss through elastic stress waves occurs due to jump-to-contact and jump-out-of-contact instabilities and can even result in capture of the elastic sphere on the half-space.
Resumo:
Infinite horizon discounted-cost and ergodic-cost risk-sensitive zero-sum stochastic games for controlled Markov chains with countably many states are analyzed. Upper and lower values for these games are established. The existence of value and saddle-point equilibria in the class of Markov strategies is proved for the discounted-cost game. The existence of value and saddle-point equilibria in the class of stationary strategies is proved under the uniform ergodicity condition for the ergodic-cost game. The value of the ergodic-cost game happens to be the product of the inverse of the risk-sensitivity factor and the logarithm of the common Perron-Frobenius eigenvalue of the associated controlled nonlinear kernels. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The primary purpose of the present work was to illustrate whether cell proliferation can be enhanced on electroactive bioceramic composite, when the cells are cultured in the presence of external electrical stimulation. The two different aspects of the influence of electric field (E-field) application toward stimulating the growth/proliferation of bone/connective tissue cells in vitro, (a) intermittent delivery of extremely low strength pulsed electrical stimulation (0.5-4V/cm, 400s DC pulse) and (b) surface charge generated by electrical poling (10kV/cm) of hydroxyapatite (HA)-BaTiO3 piezobiocomposite have been demonstrated. The experimental results establish that the cell growth can be enhanced using the new culture protocol of the intermittent delivery of electrical pulses within a narrow range of stimulation parameters. The optimal E-field strength for enhanced cellular response for mouse fibroblast L929 and osteogenic cells is in the range of 0.5-1V/cm. The MTT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay results suggested the increased viability of E-field treated cells over 7d in culture, implicating the positive impact of electrical pulses on proliferation behavior. The alizarin red assay results showed noticeable increase in Ca-deposition on the E-field treated samples in comparison to their untreated counterparts. The negatively charged surfaces of developed piezocomposite stimulated the cell growth in a statistically noticeable manner as compared with the uncharged or positively charged surfaces of similar composition.
Resumo:
Space shift keying (SSK) is an attractive modulation technique for multi-antenna communications. In SSK, only one among the available transmit antennas is activated during one channel use, and the index of the chosen transmit antenna conveys information. In this paper, we analyze the performance of SSK in multi-hop, multi-branch cooperative relaying systems. We consider the decode-and-forward relaying protocol, where a relay forwards the decoded symbol if it decodes the symbol correctly from the received signal. We derive closed-form expressions for the end-to-end bit error rate of SSK in this system. Analytical and simulation results match very well.
Resumo:
Multi-walled carbon nanotube (MWCNT)-polyvinyl chloride (PVC) nanocomposites, with MWCNT loading up to 44.4 weight percent (wt%), were prepared by the solvent mixing and casting method. Electron microscopy indicates high degree of dispersion of MWCNT in PVC matrix, achieved by ultrasonication without using any surfactants. Thermogravimetric analysis showed a significant monotonic enhancement in the thermal stability of nanocomposites by increasing the wt% of MWCNT. Electrical conductivity of nanocomposites followed the classical percolation theory and the conductivity prominently improved from 10(-7) to 9 S/cm as the MWCNT loading increased from 0.1 to 44.4 wt%. Low value of electrical percolation threshold similar to 0.2 wt% is achieved which is attributed to high aspect ratio and homogeneous dispersion of MWCNT in PVC. The analysis of the low temperature electrical resistivity data shows that sample of 1.9 wt% follows three dimensional variable range hopping model whereas higher wt% nanocomposite samples follow power law behavior. The magnetization versus applied field data for both bulk MWCNTs and nanocomposite of 44.4 wt% display ferromagnetic behavior with enhanced coercivities of 1.82 and 1.27 kOe at 10 K, respectively. The enhancement in coercivity is due to strong dipolar interaction and shape anisotropy of rod-shaped iron nanoparticles. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Protein functional annotation relies on the identification of accurate relationships, sequence divergence being a key factor. This is especially evident when distant protein relationships are demonstrated only with three-dimensional structures. To address this challenge, we describe a computational approach to purposefully bridge gaps between related protein families through directed design of protein-like ``linker'' sequences. For this, we represented SCOP domain families, integrated with sequence homologues, as multiple profiles and performed HMM-HMM alignments between related domain families. Where convincing alignments were achieved, we applied a roulette wheel-based method to design 3,611,010 protein-like sequences corresponding to 374 SCOP folds. To analyze their ability to link proteins in homology searches, we used 3024 queries to search two databases, one containing only natural sequences and another one additionally containing designed sequences. Our results showed that augmented database searches showed up to 30% improvement in fold coverage for over 74% of the folds, with 52 folds achieving all theoretically possible connections. Although sequences could not be designed between some families, the availability of designed sequences between other families within the fold established the sequence continuum to demonstrate 373 difficult relationships. Ultimately, as a practical and realistic extension, we demonstrate that such protein-like sequences can be ``plugged-into'' routine and generic sequence database searches to empower not only remote homology detection but also fold recognition. Our richly statistically supported findings show that complementary searches in both databases will increase the effectiveness of sequence-based searches in recognizing all homologues sharing a common fold. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.
Resumo:
The objective in this work is to develop downscaling methodologies to obtain a long time record of inundation extent at high spatial resolution based on the existing low spatial resolution results of the Global Inundation Extent from Multi-Satellites (GIEMS) dataset. In semiarid regions, high-spatial-resolution a priori information can be provided by visible and infrared observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). The study concentrates on the Inner Niger Delta where MODIS-derived inundation extent has been estimated at a 500-m resolution. The space-time variability is first analyzed using a principal component analysis (PCA). This is particularly effective to understand the inundation variability, interpolate in time, or fill in missing values. Two innovative methods are developed (linear regression and matrix inversion) both based on the PCA representation. These GIEMS downscaling techniques have been calibrated using the 500-m MODIS data. The downscaled fields show the expected space-time behaviors from MODIS. A 20-yr dataset of the inundation extent at 500 m is derived from this analysis for the Inner Niger Delta. The methods are very general and may be applied to many basins and to other variables than inundation, provided enough a priori high-spatial-resolution information is available. The derived high-spatial-resolution dataset will be used in the framework of the Surface Water Ocean Topography (SWOT) mission to develop and test the instrument simulator as well as to select the calibration validation sites (with high space-time inundation variability). In addition, once SWOT observations are available, the downscaled methodology will be calibrated on them in order to downscale the GIEMS datasets and to extend the SWOT benefits back in time to 1993.