949 resultados para Soil-water retention modeling
Resumo:
Die salpetrige Säure (HONO) ist eine der reaktiven Stickstoffkomponenten der Atmosphäre und Pedosphäre. Die genauen Bildungswege von HONO, sowie der gegenseitige Austausch von HONO zwischen Atmosphäre und Pedosphäre sind noch nicht vollständig aufgedeckt. Bei der HONO-Photolyse entsteht das Hydroxylradikal (OH) und Stickstoffmonooxid (NO), was die Bedeutsamkeit von HONO für die atmosphärische Photochemie widerspiegelt.rnUm die genannte Bildung von HONO im Boden und dessen anschließenden Austausch mit der Atmosphäre zu untersuchen, wurden Messungen von Bodenproben mit dynamischen Kammern durchgeführt. Im Labor gemessene Emissionsflüsse von Wasser, NO und HONO zeigen, dass die Emission von HONO in vergleichbarem Umfang und im gleichen Bodenfeuchtebereich wie die für NO (von 6.5 bis 56.0 % WHC) stattfindet. Die Höhe der HONO-Emissionsflüsse bei neutralen bis basischen pH-Werten und die Aktivierungsenergie der HONO-Emissionsflüsse führen zu der Annahme, dass die mikrobielle Nitrifikation die Hauptquelle für die HONO-Emission darstellt. Inhibierungsexperimente mit einer Bodenprobe und die Messung einer Reinkultur von Nitrosomonas europaea bestärkten diese Theorie. Als Schlussfolgerung wurde das konzeptionelle Model der Bodenemission verschiedener Stickstoffkomponenten in Abhängigkeit von dem Wasserhaushalt des Bodens für HONO erweitert.rnIn einem weiteren Versuch wurde zum Spülen der dynamischen Kammer Luft mit erhöhtem Mischungsverhältnis von HONO verwendet. Die Messung einer hervorragend charakterisierten Bodenprobe zeigte bidirektionale Flüsse von HONO. Somit können Böden nicht nur als HONO-Quelle, sondern auch je nach Bedingungen als effektive Senke dienen. rnAußerdem konnte gezeigt werden, dass das Verhältnis von HONO- zu NO-Emissionen mit dem pH-Wert des Bodens korreliert. Grund könnte die erhöhte Reaktivität von HONO bei niedrigem pH-Wert und die längere Aufenthaltsdauer von HONO verursacht durch reduzierte Gasdiffusion im Bodenporenraum sein, da ein niedriger pH-Wert mit erhöhter Bodenfeuchte am Maximum der Emission einhergeht. Es konnte gezeigt werden, dass die effektive Diffusion von Gasen im Bodenporenraum und die effektive Diffusion von Ionen in der Bodenlösung die HONO-Produktion und den Austausch von HONO mit der Atmosphäre begrenzen. rnErgänzend zu den Messungen im Labor wurde HONO während der Messkampagne HUMPPA-COPEC 2010 im borealen Nadelwald simultan in der Höhe von 1 m über dem Boden und 2 bis 3 m über dem Blätterdach gemessen. Die Budgetberechnungen für HONO zeigen, dass für HONO sämtliche bekannte Quellen und Senken in Bezug auf die übermächtige HONO-Photolyserate tagsüber vernachlässigbar sind (< 20%). Weder Bodenemissionen von HONO, noch die Photolyse von an Oberflächen adsorbierter Salpetersäure können die fehlende Quelle erklären. Die lichtinduzierte Reduktion von Stickstoffdioxid (NO2) an Oberflächen konnte nicht ausgeschlossen werden. Es zeigte sich jedoch, dass die fehlende Quelle stärker mit der HONO-Photolyserate korreliert als mit der entsprechenden Photolysefrequenz, die proportional zur Photolysefrequenz von NO2 ist. Somit lässt sich schlussfolgern, dass entweder die Photolyserate von HONO überschätzt wird oder dass immer noch eine unbekannte, HONO-Quelle existiert, die mit der Photolyserate sehr stark korreliert. rn rn
Resumo:
Water held in the unsaturated zone is important for agriculture and construction and is replenished by infiltrating rainwater. Monitoring the soil water content of clay soils using ground-penetrating radar (GPR) has not been researched, as clay soils cause attenuation of GPR signal. In this study, GPR common-midpoint soundings (CMPs) are used in the clayey soils of the Miller Run floodplain to monitor changes in the soil water content (SWC) before and after rainfall events. GPR accomplishes this task because increases in water content will increase the dielectric constant of the subsurface material, and decrease the velocity of the GPR wave. Using an empirical relationship between dielectric constant and SWC, the Topp relation, we are able to calculate a SWC from these velocity measurements. Non-invasive electromagnetics, resistivity, and seismic were performed, and from these surveys, the layering at the field site was delineated. EM characterized the horizontal variation of the soil, allowing us to target the most clay rich area. At the CMP location, resistivity indicates the vertical structure of the subsurface consists of a 40 cm thick layer with a resistivity of 100 ohm*m. Between 40 cm and 1.5 m is a layer with a resistivity of 40 ohm*m. The thickness estimates were confirmed with invasive auger and trenching methods away from the CMP location. GPR CMPs were collected relative to a July 2013 and September 2013 storm. The velocity observations from the CMPs had a precision of +/- 0.001 m/ns as assessed by repeat analysis. In the case of both storms, the GPR data showed the expected relationship between the rainstorms and calculated SWC, with the SWC increasing sharply after the rainstorm and decreasing as time passed. We compared these data to auger core samples collected at the same time as the CMPs were taken, and the volumetric analysis of the cores confirmed the trend seen in the GPR, with SWC values between 3 and 5 percent lower than the GPR estimates. Our data shows that we can, with good precision, monitor changes in the SWC of conductive soils in response to rainfall events, despite the attenuation induced by the clay.
Resumo:
We studied temporal and spatial patterns of soil nitrogen (N) dynamics from 1993 to 1995 in three watersheds of Fernow Experimental Forest, W.V.: WS7 (24-year-old, untreated); WS4 (mature, untreated); and WS3 (24-year-old, treated with (NH4)2SO since 1989 at the rate of 35 kg Nha–1year–1). Net nitrification was 141, 114, and115 kg Nha–1year–1, for WS3, WS4, and WS7, respectively, essentially 100% of net N mineralization for all watersheds. Temporal (seasonal) patterns of nitrification were significantly related to soil moisture and ambient temperaturein untreated watersheds only. Spatial patterns of soil water NO3–of WS4 suggest that microenvironmental variabilitylimits rates of N processing in some areas of this N-saturated watershed, in part by ericaceous species in the herbaceous layer. Spatial patterns of soil water NO3–in treated WS3 suggest that later stages of N saturation may result inhigher concentrations with less spatial variability. Spatial variability in soil N variables was lower in treated WS3 versus untreated watersheds. Nitrogen additions have altered the response of N-processing microbes to environmental factors, becoming less sensitive to seasonal changes in soil moisture and temperature. Biotic processes responsible forregulating N dynamics may be compromised in N-saturated forest ecosystems.
Resumo:
The refeeding syndrome is a potentially lethal complication of refeeding in patients who are severely malnourished from whatever cause. Too rapid refeeding, particularly with carbohydrate may precipitate a number of metabolic and pathophysiological complications, which may adversely affect the cardiac, respiratory, haematological, hepatic and neuromuscular systems leading to clinical complications and even death. We aimed to review the development of the refeeding syndrome in a variety of situations and, from this and the literature, devise guidelines to prevent and treat the condition. We report seven cases illustrating different aspects of the refeeding syndrome and the measures used to treat it. The specific complications encountered, their physiological mechanisms, identification of patients at risk, and prevention and treatment are discussed. Each case developed one or more of the features of the refeeding syndrome including deficiencies and low plasma levels of potassium, phosphate, magnesium and thiamine combined with salt and water retention. These responded to specific interventions. In most cases, these abnormalities could have been anticipated and prevented. The main features of the refeeding syndrome are described with a protocol to anticipate, prevent and treat the condition in adults.
Resumo:
Adrenal aldosterone production, the major regulator of salt and water retention, is discussed with respect to hypertensive diseases. Physiological aldosterone production is tightly regulated, either stimulated or inhibited, in the adrenal zona glomerulosa by both circulating factors and/or by locally derived endothelial factors. Arterial hypertension caused by volume overload is the leading clinical symptom indicating increased mineralocorticoid hormones. Excessive aldosterone production is seen in adenomatous disease of the adrenals. The balance between stimulatory/proliferative and antagonistic signaling is disturbed by expression of altered receptor subtypes in the adenomas. Increased aldosterone production without a detectable adenoma is the most frequent form of primary aldosteronism. Both increased sensitivity to agonistic signals and activating polymorphisms within the aldosterone synthase gene (CYP11B2) have been associated with excessive aldosterone production. 17alpha-Hydroxylase deficiency and glucocorticoidremediable aldosteronism can also cause excessive mineralocorticoid synthesis. In contrast, the severe form of pregnancy-induced hypertension, preeclampsia, is characterized by a compromised volume expansion in the presence of inappropriately low aldosterone levels. Initial evidence suggests that compromised CYP11B2 is causative, and that administration of NaCl lowered blood pressure in pregnant patients with low aldosterone availability due to a loss of function.
Resumo:
Patients with neurosurgical disorders often present with hyponatraemia. Two mechanisms account for hyponatraemia in these patients: the Syndrome of Inappropriate Secretion of Antidiuretic Hormone (SIADH) and Cerebral Salt Wasting Syndrome (CSWS). The two entities differ in their volume status. In SIADH, volume is expanded due to ADH-mediated renal water retention, but in CSWS, volume is diminished as a consequence of renal salt wasting, most likely attributable to an increased secretion of Brain Natriuretic Peptide (BNP) and Artrial Natriuretic Peptide (ANP). Since it is clinically difficult to distinguish between these two entities, fluid management has to be performed carefully. Salt and fluid replacement appears to be indicated in CSWS, whereas fluid restriction might be the primary approach in patients with SIADH.
Resumo:
Ascites and hyponatremia are frequent complications of advanced liver cirrhosis. Over 50 % of cirrhotic patients develop ascites and about one third gets hyponatremic. The development of ascites is due to an increased sodium retention in the kidneys, leading to expansion of extracellular volume and accumulation of fluid in the peritoneum. Hyponatremia is related to an impairment in the renal capacity to eliminate solute-free water that causes water retention that is disproportionate to the sodium retention, thus causing a reduction in serum sodium concentration. The exact pathogenesis of sodium retention is not clear, yet. The main pathogenic factor responsible for hyponatremia is a nonosmotic hypersecretion of vasopressin from the neurohypophysis. There is evidence suggesting that hyponatremia predisposes to hepatic encephalopathy. Impairment in glomerular filtration rate in hepatorenal syndrome is due to renal vasoconstriction. Treatment of ascites consists of potassium sparing diuretics, loop diuretics, and/or paracentesis. The current standard of care of hyponatremia based on fluid restriction is unsatisfactory. Currently, a new family of drugs, known as vaptans, which act by specifically antagonizing the effects of vasopressin on the V2 receptors located in the kidney, is evaluated for their role in the management of hyponatremia. Because data on long-term administration are still incomplete, they cannot be used routinely, yet. Liver transplantation is the treatment of choice for hepatorenal syndrome. As bridge to transplantation long-term administration of intravenous albumin and vasoconstrictors can be used.
Resumo:
Renal dysfunction represents a frequent comorbidity in patients with in chronic heart failure and is not only a strong predictor of mortality, but also causally linked to the development and progression of CHF. Mechanisms involved in the cross-talk between the kidney and the heart include the up-regulated sympathetic nerve system, activation of the renin-angiotensin-aldosterone system, vasopressin release and decreased activity of arterial baroreceptors and natriuretic peptides resulting in abnormal salt and water retention. The main therapeutic goals for patients with the so-called cardiorenal syndrome is the normalization of volume status while avoiding overdiuresis and renal dysfunction as well as the implementation of an evidence-based pharmacologic treatment to improve patient outcome. If these two goals are not achieved with conventional therapy, renal replacement therapy should be discussed in an interdisciplinary approach. All current renal replacement techniques have proved to be useful in controlling hypervolemia and ameliorating functional cardiac parameters and quality of life in patients with heart failure. Nevertheless, the influence of renal replacement therapy on long-term survival of affected patients has not been addressed in large controlled studies.
Resumo:
Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.
Resumo:
The Andean piedmont of eastern Bolivia is situated at the southern margin of Amazonia characterized by an overall humid climate regime with a marked contrast between the rainy and dry seasons. The nearby Subandean foothills deliver abundant sandy sediments to the piedmont, leading to a complex array of sediments and paleosol horizons. Within this setting, the presented study analyzes four profiles of paleosol-sediment-sequences along incised ephemeral streams near Santa Cruz de la Sierra with a focus on past pedogenic variability in the context of the regional late Quaternary geomorphic and environmental evolution. Based on field observations, micromorphological analysis, geochemical and clay mineralogical data five classes of paleosol horizons could be distinguished. The individual paleosol horizons as well as the sediments, in which they developed, were interpreted regarding their paleoenvironmental significance, taking into consideration the various controls on soil formation with particular focus on changes of local environmental conditions through time. Thus, three different pathways of soil formation were established. On the late Quaternary timescale, the results suggest a strong relation between paleoenvironmental conditions (climate, vegetation etc.), soil environment (soil water flow, micro-environment) and the type of paleosol horizons developed in the study area. The formation of “red beds” (Bw horizons) implies very dry soil environments under dominantly dry conditions, which seem to have prevailed in the study area some time before ∼ 18 cal ka BP. Moderately dry but markedly seasonal environmental conditions with a long dry season and strong seasonal contrasts in soil water flow could explain the formation of moderately developed Bwt horizons around ∼ 18 cal ka BP and much of the mid-Holocene. The formation of Bt horizons and/or clay lamellae in relation to intense neoformation of clay and dominant clay illuviation by soil water points to wet conditions similar to today, which have probably prevailed in the study area before ∼ 8 cal ka BP and since ∼ 5 cal ka BP.
Resumo:
A model is developed to describe transport and loss of methyl bromide (MeBr) in soil following application as a soil fumigant. The model is used to investigate the effect of soil and management factors on MeBr volatilization. Factors studied include depth of injection, soil water content, presence or absence of tarp, depth to downward barrier, and irrigation after injection. Of these factors, the most important was irrigation after injection followed by covering with the tarp, which increased the diffusive resistance of the soil and prevented early loss of MeBr. The model offers an explanation for the apparently contradictory observations of earlier field studies of MeBr volatilization from soils under different conditions. The model was also used to calculate the concentration-time index for various management alternatives, showing that the irrigation application did not make the surface soil more difficult to fumigate, except at very early times. Therefore, irrigation shows promise for reducing fumigant loss while at the same time permitting control of target organisms during fumigation.
Resumo:
In Sehoul, Morocco, the use of marginal land for agriculture became a necessity for the local population due to increased poverty and the occupation of the best land by new owners. Desertification poses an additional threat to agricultural production on marginal slopes, which are often stony and degraded. In a participatory process embedded in the EU DESIRE research project, potential sustainable land management measures were selected to address land degradation and desertification. Promising experiences with no-tillage practices elsewhere in Morocco had motivated the Moroccan government to promote conservation agriculture throughout the country. This combination of crop rotation, minimal soil disturbance and soil cover maintenance, however, had not yet been tested on sloping degraded land. Field trials of grazing enclosure combined with no or minimum tillage were conducted on the plots of two farmers, and trial results were analyzed based on stakeholders’ criteria. Results suggest that increased soil cover with barley residues improved rainwater use efficiency and yields only slightly, although soil water was generally enhanced. Soil moisture measurements revealed that no-tillage was favorable mainly at soil depths of 5 cm and in connection with low-rainfall events (<20 mm); under these circumstances, moisture content was generally higher under no-tillage than under conventional tillage. Moreover, stakeholder discussion confirmed that farmers in Sehoul remain primarily interested in animal husbandry and are reluctant to change the current grazing system. Implementation of conservation agriculture is thus challenged both by the degraded, sloping and stony nature of the land, and by the socio-economic circumstances in Sehoul.
Resumo:
Lesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HCl) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and MP and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4.542 meq Ca, 1, 184 meq Mg, and 2,329 meq Al over a 45 in long and I in wide stream segment, smaller amounts of Be. Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F- occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42- but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al. respectively, in a 4-hour recovery period. Desorption of SO42- occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil-soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream Sediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data.
Resumo:
Leafing phenology of two dry-forest sites on soils of different depth (S = shallow, D = deep) at Shipstern Reserve, Belize, were compared at the start of the rainy season (April-June 2000). Trees greater than or equal to 2.5 cm dbh were recorded weekly for 8 wk in three 0.04-ha plots per site. Ten species were analysed individually for their phenological patterns, of which the three most common were Bursera simaruba, Metopium brownei and Jatropha gaumeri. Trees were divided into those in the canopy (> 10 cm dbh) and the subcanopy (less than or equal to 10 cm dbh). Site S had larger trees on average than site D. The proportion of trees flushing leaves at any one time was generally higher in site S than in site D, for both canopy and subcanopy trees. Leaf flush started 2 wk earlier in site S than site D for subcanopy trees, but only 0.5 wk earlier for the canopy trees. Leaf flush duration was 1.5 wk longer in site S than site D. Large trees in the subcanopy flushed leaves earlier than small ones at both sites but in the canopy just at site D. Large trees flushed leaves earlier than small ones in three species and small trees flushed leaves more rapidly in two species. Bursera and Jatropha followed the general trends but Metopium, with larger trees in site D than site S, showed the converse with onset of flushing I wk earlier in site D than site S. Differences in response of the canopy and subcanopy trees on each site can be accounted for by the predominance of spring-flushing or stem-succulent species in site S and a tendency for evergreen species to occur in site D. Early flushing of relatively larger trees in site D most likely requires access to deeper soil water reserves but small and large trees utilize stored tree water in site S.
Resumo:
The water relations of two tree species in the Euphorbiaceae were compared to test in part a hypothesis that the forest understorey plays an integral role in drought response. At Danum, Sabah, the relatively common species Dimorphocalyx muricatus is associated with ridges whilst another species, Mallotus wrayi, occurs widely both on ridges and lower slopes. Sets of subplots within two 4 -ha permanent plots in this lowland dipterocarp rain forest, were positioned on ridges and lower slopes. Soil water potentials were recorded in 1995-1997, and leaf water potentials were measured on six occasions. Soil water potentials on the ridges (-0.047 MPa) were significantly lower than on the lower slopes (-0.012 MPa), but during the driest period in May 1997 they fell to similarly low levels on both sites (-0.53 MPa). A weighted 40-day accumulated rainfall index was developed to model the soil water potentials. At dry times, D. muricatus (ridge) had significantly higher pre-dawn (-0.21 v. -0.57 MPa) and mid-day (-0.59 v. -1.77 MPa) leaf water potentials than M. wrayi (mean of ridge and lower slope). Leaf osmotic potentials of M. wrayi on the ridges were lower (-1.63 MPa) than on lower slopes (-1.09 MPa), with those for D. muricatus being intermediate (-1.29 MPa): both species adjusted osmotically between wet and dry times. D. muricatus trees were more deeply rooted than M. wrayi trees (97 v. 70 cm). M. wrayi trees had greater lateral root cross-sectional areas than D. muricatus trees although a greater proportion of this sectional area for D. muricatus was further down the soil profile. D. muricatus appeared to maintain relatively high water potentials during dry periods because of its access to deeper water supplies and thus it largely avoided drought effects, but M. wrayi seemed to be more affected yet tolerant of drought and was more plastic in its response. The interaction between water availability and topography determines these species' distributions and provides insights into how rain forests can withstand occasional strong droughts.