982 resultados para Software Architecture
Resumo:
En la era digital actual, Internet forma parte de nuestras vidas, y ha aportado cambios a lasociedad globalizada. Algunos de estos cambios nos permiten nuevas formas de relacionarnos y degestionar el conocimiento, dando sentido al término que hoy entendemos como sociedad-red.Por eso, en el entorno que nos envuelve existen continuamente acciones colaborativas globales quefomentan la comunicación y se comparte información de diversos tipos, con la finalidad deaprender y mantenerse constantemente informado. Específicamente, los centros educativos no sequedan al margen ya que requiere preparar estudiantes para esta sociedad.Estos cambios en la sociedad presentan grandes desafíos para el centro educativo, que nopermiten ser afrontados solamente desde el aula. Los centros requieren adaptarse a un modelocompatible con la sociedad-red, y por ello, se sugieren un modelo centro-red, que presente unaestructura de una organización compatible con la era en el que estamos inmersos.Las redes de colaboración en los centros permite intercambiar información y aportar valor a laeducación con el objetivo de la mejora educativa. En este sentido, los centros educativos debendisponer de características que permitan ser flexibles, adaptarse a los agentes y organizaciones quele envuelven. Pero la estructura actual de un centro educativo es rígida y por tanto esta evoluciónrepresenta uno de los mayores desafíos para el sistema educativo.En esta linea, en los centros de Formación Profesional existe una tendencia hacia modeloscolaborativos con el tejido empresarial, entre otros agentes, y es en este punto donde este proyectopretende centrar el foco de la investigación. Con más exactitud, en la creación de una red decolaboración con el agente que el centro educativo seleccione.Específicamente las TIC forman un papel esencial, y se deben poner al servicio del problemaque apuntábamos para ayudar a solventarlo. En este sentido, es adecuado un diseño del artefactocon Software Libre que tiene múltiples beneficios para este objetivo, pero que destacamos el que ami parecer es el más importante; la vinculación con la filosofía de compartir el conocimiento, quegarantiza la simbiosis con la red colaborativa y es por esta razón que el tema de la investigación esrelevante para el centro educativo.Tal y como se mencionaba previamente, las TIC pueden ayudar a fomentar la red colaborativa,pero no sólo el artefacto TIC generado en este proyecto debe cumplir características como laflexibilidad, también es crítico que el centro educativo y los agentes de la red interioricen la culturacolaborativa en sus acciones con la implicación y compromiso que se requiere. Pero como podemosPágina 6Universitat Oberta de Catalunya Trabajo Final de Máster - Software Libreimaginar, ese cambio de cultura, no es una tarea sencilla y presenta problemas. Para mitigarlos yfomentar la cultura en red, se requieren procesos específicos que permitan incorporarla en la medidade lo posible. Para ello, la combinación de la innovación sistémica y el diseño de la investigación eneducación resultan metodologías apropiadas.Por eso, investigaremos durante este proceso cómo las redes de colaboración y el SoftwareLibre permiten adaptar el centro al entorno, cómo pueden ayudar al centro a potenciar la FormaciónProfesional y garantizar la durabilidad de las acciones, con el objetivo que perdure el conocimientoy la propia red de colaboración para una mejora educativa.
Resumo:
Este proyecto busca analizar, diseñar e implementar una nueva solución de telefonía para el Centro Social de Oficiales de la Policía Nacional contemplando la posibilidad de optar por una migración hacia un sistema VoIP bajo software libre con Asterisk. En consecuencia, se deben evaluar las tecnologías actuales buscando proveer nuevas funcionalidades en el servicio telefónico generando bajos costos en su implementación, funcionamiento y mantenimiento.
Resumo:
Basé sur une expérience de terrain en archives médicales analysée notamment à l'aide de notions issues de l'ethnométhodologie, cet article entend revenir sur des aspects généralement invisibles de l'architecture de l'information telles les activités et personnes qui assurent sa production et son maintien. Utilisant la notion d'équipement des documents, nous proposons une incursion dans le monde de ceux qui réalisent ces opérations au quotidien, et produisent, par leur activité, une architecture de l'information située à partir de leurs compétences spécifiques. Nous discutons notamment des pratiques relatives à la numérisation des documents dans le contexte d'une architecture globale.
Resumo:
This manual describes how to use the Iowa Bridge Backwater software. It also documents the methods and equations used for the calculations. The main body describes how to use the software and the appendices cover technical aspects. The Bridge Backwater software performs 5 main tasks: Design Discharge Estimation; Stream Rating Curves; Floodway Encroachment; Bridge Backwater; and Bridge Scour. The intent of this program is to provide a simplified method for analysis of bridge backwater for rural structures located in areas with low flood damage potential. The software is written in Microsoft Visual Basic 6.0. It will run under Windows 95 or newer versions (i.e. Windows 98, NT, 2000, XP and later).
Resumo:
Référence bibliographique : Weigert, 315
Resumo:
En la actualidad las tecnologías de la información son utilizadas en todos los ámbitos empresariales. Desde sistemas de gestión (ERPs) pasando por la gestión documental, el análisis de información con sistema de Bussines Intelligence, pudiendo incluso convertirse en toda una nueva plataforma para proveer a las empresas de nuevos canales de venta, como es el caso deInternet.De la necesidad inicial de nuestro cliente en comenzar a expandirse por un nuevo canal de venta para poder llegar a nuevos mercados y diversificar sus clientes se inicia la motivación de este TFC.Dadas las características actuales de las tecnologías de la información e internet, estas conforman un binomio perfecto para definir este TFC que trata todos los aspectos necesarios para llegar a obtener un producto final como es un portal web inmobiliario adaptado a los requisitos demandados por los usuarios actuales de Internet.
Resumo:
El present treball exposa la planificació, disseny, anàlisi i arquitectura d'una aplicació creada amb tecnologia JEE. L'aplicació pretén ser una eina de suport psicològic a nens i nenes que tenen difícil accés a aquests professionals. La idea inicial es va inspirar en els infant d'un orfenat de Katmandú. Les tecnologies emprades per la realització del treball han estat Struts2, JSP i EJB3.0. Com a base de dades s'ha seleccionat MySQL, i el servidor d'aplicacions Jboss.
Resumo:
L'objectiu principal del TFC consisteix en la creació d'una complexa estructura modular J2EE basada i mantinguda per Maven, amb la utilització com frameworks Spring, Hibernate i Flex principalment. Aquesta estructura permet reprendre el desenvolupament inicial, nous desenvolupaments i manteniments d'una aplicació, amb un cost temporal mínim per la part de l'equip de desenvolupament.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
Abstract Human experience takes place in the line of mental time (MT) created through 'self-projection' of oneself to different time-points in the past or future. Here we manipulated self-projection in MT not only with respect to one's life events but also with respect to one's faces from different past and future time-points. Behavioural and event-related functional magnetic resonance imaging activity showed three independent effects characterized by (i) similarity between past recollection and future imagination, (ii) facilitation of judgements related to the future as compared with the past, and (iii) facilitation of judgements related to time-points distant from the present. These effects were found with respect to faces and events, and also suggest that brain mechanisms of MT are independent of whether actual life episodes have to be re-experienced or pre-experienced, recruiting a common cerebral network including the anteromedial temporal, posterior parietal, inferior frontal, temporo-parietal and insular cortices. These behavioural and neural data suggest that self-projection in time is a fundamental aspect of MT, relying on neural structures encoding memory, mental imagery and self.
Resumo:
Investigaremos cómo las redes de colaboración y el softwarelibre permiten adaptar el centro educativo al entorno, cómo pueden ayudar al centro a potenciar la formación profesional y garantizar la durabilidad de las acciones, con el objetivo que perdure el conocimiento y la propia red de colaboración para una mejora educativa.
Resumo:
Remote control systems are a very useful element to control and monitor devices quickly and easily. This paper proposes a new architecture for remote control of Android mobile devices, analyzing the different alternatives and seeking the optimal solution in each case. Although the area of remote control, in case of mobile devices, has been little explored, it may provide important advantages for testing software and hardware developments in several real devices. It can also allow an efficient management of various devices of different types, perform forensic security tasks, etc ... The main idea behind the proposed architecture was the design of a system to be used as a platform which provides the services needed to perform remote control of mobile devices. As a result of this research, a proof of concept was implemented. An Android application running a group of server programs on the device, connected to the network or USB interface, depending on availability. This servers can be controlled through a small client written in Java and runnable both on desktop and web systems.