953 resultados para Snow surveys
Resumo:
Under the Chinese National Antarctic Research Expedition program in 2006, the annual thermal mass balance of landfast ice in the vicinity of Zhongshan Station, Prydz Bay, east Antarctica, was investigated. Sea ice formed from mid-February onward, and maximum ice thickness occurred in late November. Snow cover remained thin, and blowing snow caused frequent redistribution of the snow. The vertical ice salinity showed a 'question-mark-shaped' profile for most of the ice growth season, which only turned into an 'I-shaped' profile after the onset of ice melt. The oceanic heat flux as estimated from a flux balance at ice-ocean interface using internal ice temperatures decreased from 11.8 (±3.5) W/m**2 in April to an annual minimum of 1.9 (±2.4) W/m**2 in September. It remained low through late November, in mid-December it increased sharply to about 20.0 W/m**2. Simulations applying the modified versions of Stefan's law, taking account the oceanic heat flux and ice-atmosphere coupling, compare well with observed ice growth. There was no obvious seasonal cycle for the thermal conductivity of snow cover, which was also derived from internal ice temperatures. Its annual mean was 0.20 (±0.04) W/m/°C.
Resumo:
The alpha- and gamma-hexachlorocyclohexanes (HCHs) are being scavenged from the atmosphere by falling snow, with the average total scavenging ratios (WT) of 3.8 x 10**4 and 9.6 x 10**3, respectively. After deposition, HCH snow concentrations can decrease by 40% because of snowpack ventilation and increase by 50% because of upward migration of brine from the ice. HCH vertical distribution in sufficiently cold winter sea ice, which maintains brine volume fractions <5%, reflects the ice growth history. Initially, the entrapment of brine (and HCHs) in ice depends on the rates of ice growth and desalination. However, after approximately the first week of ice formation, ice growth rate becomes dominant. Deviations of HCH concentrations from the values predicted by the ice bulk salinity (rate of brine entrapment) can be explained by spatial variability of HCHs in surface water. HCH burden in the majority of the ice column remains locked throughout most of the season until the early spring when snow meltwater percolates into the ice, delivering HCHs to the upper ocean via desalination by flushing. Percolation can lead to an increase in alpha- and gamma-HCH in the sea ice by up to 2%-18% and 4%-32%, respectively.
Resumo:
Antarctica is a continent with a strong character. High wind speeds, very low temperatures and heavy snow storms. All these parameters are well known due to observations and measurements, but precipitation measurements are still rare because the number of manned stations is very limited in Antarctica. In such a polar snow region many wind driven phenomena associated with snow fall exist like snow drift, blowing snow or sastrugi. Snow drift is defined as a layer of snow formed by the wind during a snowstorm. The horizontal visibility is below eye level. Blowing snow is specified as an ensemble of snow particles raised by the wind to moderate or great heights above the ground; the horizontal visibility at eye level is generally very poor (National Snow And Ice Data Center (NSIDC), 2013). Sastrugi are complex, fragile and sharp ridges or grooves formed on land or over sea ice. They arise from wind erosion, saltation of snow particles and deposition. To get more details about these procedures better instruments than the conventional stake array are required. This small report introduces a new measuring technique and therefore offers a never used dataset of snow heights. It is very common to measure the snow height with a stake array in Antarctica (f.e. Neumayer Station, Kohnen Station) but not with a laser beam. Thus the idea was born to install a new instrument in December 2012 at Neumayer Station.