975 resultados para Smaller Kidneys
Resumo:
Extraction of text areas from the document images with complex content and layout is one of the challenging tasks. Few texture based techniques have already been proposed for extraction of such text blocks. Most of such techniques are greedy for computation time and hence are far from being realizable for real time implementation. In this work, we propose a modification to two of the existing texture based techniques to reduce the computation. This is accomplished with Harris corner detectors. The efficiency of these two textures based algorithms, one based on Gabor filters and other on log-polar wavelet signature, are compared. A combination of Gabor feature based texture classification performed on a smaller set of Harris corner detected points is observed to deliver the accuracy and efficiency.
Resumo:
In this paper, we present the study and implementation of a low-cost system to detect the occurrences of tsunamis at significantly smaller laboratory scale. The implementation is easily scalable for real-time deployment. Information reported in this paper includes the experimentally recorded response from the pressure sensor giving an indication as well as an alarm at remote place for the detection of water turbulence similar to the case of tsunami. It has been found that the system developed works very well in the laboratory scale.
Resumo:
It is known that Berry curvature of the band structure of certain crystals can lead to effective noncommutativity between spatial coordinates. Using the techniques of twisted quantum field theory, we investigate the question of the formation of a paired state of twisted fermions in such a system. We find that to leading order in the noncommutativity parameter, the gap between the non-interacting ground state and the paired state is smaller compared to its commutative counterpart. This suggests that BCS type superconductivity, if present in such systems, is more fragile and easier to disrupt. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The physical design of a VLSI circuit involves circuit partitioning as a subtask. Typically, it is necessary to partition a large electrical circuit into several smaller circuits such that the total cross-wiring is minimized. This problem is a variant of the more general graph partitioning problem, and it is known that there does not exist a polynomial time algorithm to obtain an optimal partition. The heuristic procedure proposed by Kernighan and Lin1,2 requires O(n2 log2n) time to obtain a near-optimal two-way partition of a circuit with n modules. In the VLSI context, due to the large problem size involved, this computational requirement is unacceptably high. This paper is concerned with the hardware acceleration of the Kernighan-Lin procedure on an SIMD architecture. The proposed parallel partitioning algorithm requires O(n) processors, and has a time complexity of O(n log2n). In the proposed scheme, the reduced array architecture is employed with due considerations towards cost effectiveness and VLSI realizability of the architecture.The authors are not aware of any earlier attempts to parallelize a circuit partitioning algorithm in general or the Kernighan-Lin algorithm in particular. The use of the reduced array architecture is novel and opens up the possibilities of using this computing structure for several other applications in electronic design automation.
Resumo:
Sea level rise is among the most worrying consequences of climate change, and the biggest uncertainty of sea level predictions lies in the future behaviour of the ice sheets of Greenland and Antarctica. In this work, a literature review is made concerning the future of the Greenland ice sheet and the effect of its melting on Baltic Sea level. The relation between sea level and ice sheets is also considered more generally from a theoretical and historical point of view. Lately, surprisingly rapid changes in the amount of ice discharging into the sea have been observed along the coastal areas of the ice sheets, and the mass deficit of Greenland and West Antarctic ice sheets which are considered vulnerable to warming has been increasing from the 1990s. The changes are probably related to atmospheric or oceanic temperature variations which affect the flow speed of ice either via meltwater penetrating to the bottom of the ice sheet or via changes in the flow resistance generated by the floating parts of an ice stream. These phenomena are assumed to increase the mass deficit of the ice sheets in the warming climate; however, there is no comprehensive theory to explain and model them. Thus, it is not yet possible to make reliable predictions of the ice sheet contribution to sea level rise. On the grounds of the historical evidence it appears that sea level can rise rather rapidly, 1 2 metres per century, even during warm climate periods. Sea level rise projections of similar magnitude have been made with so-called semiempirical methods that are based on modelling the link between sea level and global mean temperature. Such a rapid rise would require considerable acceleration of the ice sheet flow. Stronger rise appears rather unlikely, among other things because the mountainous coastline restricts ice discharge from Greenland. The upper limit of sea level rise from Greenland alone has been estimated at half a metre by the end of this century. Due to changes in the Earth s gravity field, the sea level rise caused by melting ice is not spatially uniform. Near the melting ice sheet the sea level rise is considerably smaller than the global average, whereas farther away it is slightly greater than the average. Because of this phenomenon, the effect of the Greenland ice sheet on Baltic Sea level will probably be rather small during this century, 15 cm at most. Melting of the Antarctic ice sheet is clearly more dangerous for the Baltic Sea, but also very uncertain. It is likely that the sea level predictions will become more accurate in the near future as the ice sheet models develop.
Resumo:
Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.
Resumo:
Pyrolysis of thiophene over nickel nanoparticles dispersed on silica is shown to yield Y-junction carbon nanotubes with smaller diameters than those obtained by the pyrolysis of organometallic-thiophene mixtures. In the presence of water vapour, the pyrolysis of organometallic-hydrocarbon mixtures yields single-walled nanotubes, as well as relatively narrow-diameter carbon nanotubes with Y-junctions. Pyrolysis-of organometallic-hydrocarbon mixtures, in the absence of water vapour, only gives nanotubes with T- and Y-junctions.
Resumo:
The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures in the major and minor planes. The spatial filtering of the instantaneous velocity field using Gaussian convolution kernel shows that while a single large vortex ring circumscribing the jet seems to be present at the exit of nozzle, the orifice jet exhibited a number of smaller vortex ring pairs close to jet exit. The smaller length scale observed in the case of the orifice jet is representative of the smaller azimuthal vortex rings that generate axial vortex field as they are convected. This results in the axis-switching in the case of orifice jet and may have a mechanism different from the self induction process as observed in the case of contoured nozzle jet flow.
Resumo:
The striking lack of observable variation of the volume fraction with height in the center of a granular flow down an inclined plane is analysed using constitutive relations obtained from kinetic theory. It is shown that the rate of conduction in the granular energy balance equation is O(delta(2)) smaller than the rate of production of energy due to mean shear and the rate of dissipation due to inelastic collisions, where the small parameter delta = (d/(1 - e(n))H-1/2), d is the particle diameter, en is the normal coefficient of restitution and H is the thickness of the flowing layer. This implies that the volume fraction is a constant in the leading approximation in an asymptotic analysis in small delta. Numerical estimates of both the parameter delta and its pre-factor are obtained to show that the lack of observable variation of the volume fraction with height can be explained by constitutive relations obtained from kinetic theory.
Resumo:
We study the relaxation of a degenerate two-level system interacting with a heat bath, assuming a random-matrix model for the system-bath interaction. For times larger than the duration of a collision and smaller than the Poincaré recurrence time, the survival probability of still finding the system at timet in the same state in which it was prepared att=0 is exactly calculated.
Resumo:
Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.
Resumo:
The microstructural dependence of electrical properties of (Ba, Sr)TiO3(BST) thin films were studied from the viewpoint of dc and ac electrical properties. The films were grown using a pulsed laser deposition technique in a temperature range of 300 to 600 degrees C, inducing changes in grain size, structure, and morphology. Consequently, two different types of films were realized, of which type I, was polycrystalline, multigrained, while type II was [100] oriented possessing a densely packed fibrous microstructure. Leakage current measurements were done at elevated temperatures to provide evidence of the conduction mechanism present in these films. The results revealed a contribution from both electronic and ionic conduction. In the case of type I films, two trapping levels were identified with energies around 0.5 and 2.73 eV, which possibly originate from oxygen vacancies V-O and Ti3+ centers, respectively. These levels act as shallow and deep traps and are reflected in the current-voltage characteristics of the BST thin films. The activation energy associated with oxygen vacancy motion in this case was obtained as 1.28 eV. On the contrary, type II films showed no evidence of deep trap energy levels, while the identified activation energy associated with shallow traps was obtained as 0.38 eV. The activation energy obtained for oxygen vacancy motion in type II films was around 1.02 eV. The dc measurement results were further elucidated through ac impedance analysis, which revealed a grain boundary dominated response in type I in comparison to type II films where grain response is highlighted. A comparison of the mean relaxation time of the two films revealed three orders of magnitude higher relaxation time in the case of type I films. Due to smaller grain size in type I films the grains were considered to be completely depleted giving rise to only grain boundary response for the bulk of the film. The activation energy obtained from conductivity plots agree very well with that of dc measurements giving values 1.3 and 1.07 eV for type I and type II films, respectively. Since oxygen vacancy transport have been identified as the origin of resistance degradation in BST thin films, type I films with their higher value of activation energy for oxygen ion mobility explains the improvement in breakdown characteristics under constant high dc field stress. The role of microstructure in controlling the rate of degradation is found useful in this instance to enhance the film properties under high electric field stresses. (C) 2000 American Institute of Physics. [S0021-8979(00)00418-7].
Resumo:
There is substantial evidence of the decreased functional capacity, especially everyday functioning, of people with psychotic disorder in clinical settings, but little research about it in the general population. The aim of the present study was to provide information on the magnitude of functional capacity problems in persons with psychotic disorder compared with the general population. It estimated the prevalence and severity of limitations in vision, mobility, everyday functioning and quality of life of persons with psychotic disorder in the Finnish population and determined the factors affecting them. This study is based on the Health 2000 Survey, which is a nationally representative survey of 8028 Finns aged 30 and older. The psychotic diagnoses of the participants were assessed in the Psychoses of Finland survey, a substudy of Health 2000. The everyday functioning of people with schizophrenia is studied widely, but one important factor, mobility has been neglected. Persons with schizophrenia and other non-affective psychotic disorders, but not affective psychoses had a significantly increased risk of having both self-reported and test-based mobility limitations as well as weak handgrip strength. Schizophrenia was associated independently with mobility limitations even after controlling for lifestyle-related factors and chronic medical conditions. Another significant factor associated with problems in everyday functioning in participants with schizophrenia was reduced visual acuity. Their vision was examined significantly less often during the five years before the visual acuity measurement than the general population. In general, persons with schizophrenia and other non-affective psychotic disorder had significantly more limitations in everyday functioning, deficits in verbal fluency and in memory than the general population. More severe negative symptoms, depression, older age, verbal memory deficits, worse expressive speech and reduced distance vision were associated with limitations in everyday functioning. Of all the psychotic disorders, schizoaffective disorder was associated with the largest losses of quality of life, and bipolar I disorder with equal or smaller losses than schizophrenia. However, the subjective loss of qualify of life associated with psychotic disorders may be smaller than objective disability, which warrants attention. Depressive symptoms were the most important determinant of poor quality of life in all psychotic disorders. In conclusion, subjects with psychotic disorders need regular somatic health monitoring. Also, health care workers should evaluate the overall quality of life and depression of subjects with psychotic disorders in order to provide them with the basic necessities of life.
Resumo:
The mean-squared voltage fluctuation of a disordered conductor of lengthL smaller than the phase coherence lengthL ϕ, is independent of the distance between the probes. We obtain this result using the voltage additivity and the known results for the conductance fluctuation. Our results complement the recent theoretical and experimental findings.
Resumo:
Background When we are viewing natural scenes, every saccade abruptly changes both the mean luminance and the contrast structure falling on any given retinal location. Thus it would be useful if the two were independently encoded by the visual system, even when they change simultaneously. Recordings from single neurons in the cat visual system have suggested that contrast information may be quite independently represented in neural responses to simultaneous changes in contrast and luminance. Here we test to what extent this is true in human perception. Methodology/Principal Findings Small contrast stimuli were presented together with a 7-fold upward or downward step of mean luminance (between 185 and 1295 Td, corresponding to 14 and 98 cd/m2), either simultaneously or with various delays (50–800 ms). The perceived contrast of the target under the different conditions was measured with an adaptive staircase method. Over the contrast range 0.1–0.45, mainly subtractive attenuation was found. Perceived contrast decreased by 0.052±0.021 (N = 3) when target onset was simultaneous with the luminance increase. The attenuation subsided within 400 ms, and even faster after luminance decreases, where the effect was also smaller. The main results were robust against differences in target types and the size of the field over which luminance changed. Conclusions/Significance Perceived contrast is attenuated mainly by a subtractive term when coincident with a luminance change. The effect is of ecologically relevant magnitude and duration; in other words, strict contrast constancy must often fail during normal human visual behaviour. Still, the relative robustness of the contrast signal is remarkable in view of the limited dynamic response range of retinal cones. We propose a conceptual model for how early retinal signalling may allow this.