949 resultados para Single unit
Resumo:
A theoretical solution for the gravitational stresses in single span deep beams using Fourier series has been given. Numerical results for different span to depth ratios are given and these have been compared with the photoelastic results given by Saad and Hendry [1], and the finite difference results of Chow et al. [2,3].
Resumo:
ESR investigations on dilute single crystals of dibarium copper formate tetrahydrate, at room temperature and 90° K. have been described. A general method used for the evaluation of theg-tensor in this triclinic crystal, which contains only one ion in the unit cell, has been discussed. A detailed account of the evaluation of the quadrupole interaction is given. Expressions for the positions of the hyperfine levels of the lowest Kramer’s doublet of the Cu++ ion in the magnetic field have been worked out for the case when B and Q are of similar magnitude.
Resumo:
We report a search for single top quark production with the CDF II detector using 2.1 fb-1 of integrated luminosity of pbar p collisions at sqrt{s}=1.96 TeV. The data selected consist of events characterized by large energy imbalance in the transverse plane and hadronic jets, and no identified electrons and muons, so the sample is enriched in W -> tau nu decays. In order to suppress backgrounds, additional kinematic and topological requirements are imposed through a neural network, and at least one of the jets must be identified as a b-quark jet. We measure an excess of signal-like events in agreement with the standard model prediction, but inconsistent with a model without single top quark production by 2.1 standard deviations (sigma), with a median expected sensitivity of 1.4 sigma. Assuming a top quark mass of 175 GeV/c2 and ascribing the excess to single top quark production, the cross section is measured to be 4.9+2.5-2.2(stat+syst)pb, consistent with measurements performed in independent datasets and with the standard model prediction.
Resumo:
We report the observation of electroweak single top quark production in 3.2 fb-1 of pp̅ collision data collected by the Collider Detector at Fermilab at √s=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3-0.5+0.6(stat+sys) pb, extract the value of the Cabibbo-Kobayashi-Maskawa matrix element |Vtb|=0.91-0.11+0.11(stat+sys)±0.07 (theory), and set a lower limit |Vtb|>0.71 at the 95% C.L., assuming mt=175 GeV/c2.
Resumo:
A miniature furnace suitable for routine collection of x-ray data up to 1000°C from single crystals on the Hilger and Watts linear diffractometer, without restricting the normally allowed region of reciprocal space on the diffractometer, is described. The crystal is heated primarily by radiation from a surrounding current-heated, stationary platinum coil wound on a silica bracket. The coil is split at its middle to provide a 4 mm gap for crystal mounting and x-irradiation. The crystal, mounted on a standard goniometer head, can be rotated and centred freely, as in the room temperature case. There is no need for any radiation shields or water-cooling arrangement. Investigations up to 1500°C are possible with slight modifications of the furnace.
Resumo:
We report the observation of electroweak single top quark production in 3.2 fb-1 of ppbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events in the W+jets topology with a leptonically decaying W boson are classified as signal-like by four parallel analyses based on likelihood functions, matrix elements, neural networks, and boosted decision trees. These results are combined using a super discriminant analysis based on genetically evolved neural networks in order to improve the sensitivity. This combined result is further combined with that of a search for a single top quark signal in an orthogonal sample of events with missing transverse energy plus jets and no charged lepton. We observe a signal consistent with the standard model prediction but inconsistent with the background-only model by 5.0 standard deviations, with a median expected sensitivity in excess of 5.9 standard deviations. We measure a production cross section of 2.3+0.6-0.5(stat+sys) pb, extract the CKM matrix element value |Vtb|=0.91+0.11-0.11 (stat+sys)+-0.07(theory), and set a lower limit |Vtb|>0.71 at the 95% confidence level, assuming m_t=175 GeVc^2.
Resumo:
We report a measurement of the single top quark production cross section in 2.2 ~fb-1 of p-pbar collision data collected by the Collider Detector at Fermilab at sqrt{s}=1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the background-only model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2 +0.7 -0.6(stat+sys) pb, extract the CKM matrix element value |V_{tb}|=0.88 +0.13 -0.12 (stat+sys) +- 0.07(theory), and set the limit |V_{tb}|>0.66 at the 95% C.L.
Resumo:
The out-diffusion of germanium from the core of a photosensitive fiber under elevated temperature is exploited to form a Fabry-Perot filter within a single fiber Bragg grating, by subjecting the diffused region to a single exposure using the standard phase-mask technique. A key aspect of our work is the measurement of the out-diffusion through energy dispersive X-ray analysis. Furthermore, we demonstrate the use of the above single-grating filter for discrimination and simultaneous measurement of strain and temperature. The proposed technique provides a significant advantage over other existing methods that require at least two gratings.
Resumo:
The Raman spectrum of diglycine barium chloride monohydrate in the single crystal form has been recorded using λ 2536·5 excitation. 43 Raman lines (9 lattice and 34 internal) have been recorded. Satisfactory assignments have been given for most of the observed Raman lines. It is concluded from a comparison of the Raman spectrum of this compound with those of glycine and of other addition compounds of glycine, that the glycine unit exists in the zwitterion form in the structure of diglycine barium chloride monohydrate.
Resumo:
Single-step low-temperature solution combustion (LCS) synthesis was adopted for the preparation of LaMnO3+ (LM) nanopowders. The powders were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS),surface area and Fourier transform infrared spectroscopy (FTIR). The PXRD of as-formed LM showed a cubic phase but, upon calcination (900degrees C, 6 h), it transformed into a rhombohedral phase. The effect of fuel on the formation of LM was examined, and its structure and magnetoresistance properties were investigated. Magnetoresistance (MR) measurements on LM were carried out at 0, 1, 4 and 7 T between 300 and 10 K. LM (fuel-to-oxidizer ratio; = 1) showed an MR of 17% at 1 T, whereas, for 4 and 7 T, it exhibited an MR of 45 and 55%, respectively, near the TM-I. Metallic resistivity data below TM-I showed that the double exchange interaction played a major role in this compound. It was interesting to observe that the sample calcined at 1200 degrees C for 3 h exhibited insulator behavior.
Resumo:
The crystal structure of copper ammonium oxalate dihydrate (space group P1̃) has been derived from a refinement of the two-dimensional (hk0) and (0kl) x-ray data using the atomic coordinateis of the isomorphous salt CuK 2(C2O4)2.2H2O as the starting point of the analysis. In contrast to the chromium complexes of oxalic acid the C-C bonds in both the two nonequivalent oxalate ions in the unit cell are single bonds (1.58 and 1.61 Å) consistent with the conclusion of Jeffrey and Parry that the carboxyl groups of the oxalate ion are separated by a pure a bond with little or no π conjugation across the molecule. Both the oxalate ions are slightly nonplanar. The copper ions occupy the special positions (0, 0, 0) and 0, 1/2, 0) and their coordination is of the distorted octahedral type with four nearest oxygen neighbors ( ≃ 2 Å) at the corners of a square and two more distant atoms along the octahedral bond direction. The environment of the NH4+ ions consists of eight nearest oxygen atoms at a mean distance of 3 Å.
Resumo:
A laboratory model of a thermally driven adsorption refrigeration system with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC 134a) as the refrigerant was developed. The single stage compression system has an ensemble of four adsorbers packed with Maxsorb II specimen of activated carbon that provide a near continuous flow which caters to a cooling load of up to 5W in the 5-18 degrees C region. The objective was to utilise the low grade thermal energy to drive a refrigeration system that can be used to cool some critical electronic components. The laboratory model was tested for it performance at various cooling loads with the heat source temperature from 73 to 93 degrees C. The pressure transients during heating and cooling phases were traced. The cyclic steady state and transient performance data are presented. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Atomically resolved scanning tunneling microscopy was conducted on cleaved single crystals of the cubic perovskite Pr0.68Pb0.32MnO3.Several different surface configurations could be resolved including a frequent square arrangement with atomic distances in excellent agreement to the bulk lattice constant of the cubic structure. We also observed stripe formation and a surface reconstruction. The latter is likely related to a polar rare earth-oxygen terminated surface. (C) 2010 American Institute of Physics.
Resumo:
We report the first observation of single top quark production using 3.2 fb^-1 of pbar p collision data with sqrt{s}=1.96 TeV collected by the Collider Detector at Fermilab. The significance of the observed data is 5.0 standard deviations, and the expected sensitivity for standard model production and decay is in excess of 5.9 standard deviations. Assuming m_t=175 GeV/c^2, we measure a cross section of 2.3 +0.6 -0.5 (stat+syst) pb, extract the CKM matrix element value |V_{tb}|=0.91 +-0.11 (stat+syst) 0.07(theory), and set the limit |V_{tb}|>0.71 at the 95% C.L.