970 resultados para Single Particle Spectroscopy
Resumo:
Social concerns for environmental impact on air, water and soil pollution have grown along with the accelerated growth of pig production. This study intends to characterize air contamination caused by fungi and particles in swine production, and, additionally, to conclude about their eventual environmental impact. Fiftysix air samples of 50 litters were collected through impaction method. Air sampling and particle matter concentration were performed in indoor and also outdoor premises. Simultaneously, temperature and relative humidity were monitored according to the International Standard ISO 7726 – 1998. Aspergillus versicolor presents the highest indoor spore counts (>2000 CFU/m3) and the highest overall prevalence (40.5%), followed by Scopulariopsis brevicaulis (17.0%) and Penicillium sp. (14.1%). All the swine farms showed indoor fungal species different from the ones identified outdoors and the most frequent genera were also different from the ones indoors. The distribution of particle size showed the same tendency in all swine farms (higher concentration values in PM5 and PM10 sizes). Through the ratio between the indoor and outdoor values, it was possible to conclude that CFU/m3 and particles presented an eventual impact in outdoor measurements.
Resumo:
Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN
Resumo:
Epigallocatechin gallate (EGCG), an antioxidant with several pharmacological and biological activities, was encapsulated in carbohydrate particles to preserve its antioxidant properties and improve its bioavailability. Gum arabic–maltodextrin particles loaded with EGCG (EGCG/P) were successfully produced by homogenization and spray-drying, with an EGCG loading efficiency of 96 ± 3%. Spray-dried particles are spherical or corrugated and polydisperse with diameters less than 20 m. The particles in aqueous suspension revealed two main populations, with mean average diameters of 40 nm and 400 nm. Attenuated total reflection-infrared spectroscopy (ATR-IR) confirmed that EGCG was incorporated in the carbohydrate matrix by intermolecular interactions, maintaining its chemical integrity. Atomic force microscopy imaging proved the particle spherical shape and size. The present study demonstrates that the carbohydrate matrix is able to preserve EGCG antioxidant properties, as proof of concept to be used as polymeric drug carrier.
Resumo:
Multi-objective particle swarm optimization (MOPSO) is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyzethe MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.
Resumo:
Objetivos – Demonstrar o potencial da espetroscopia (1H) por ressonância magnética na doença degenerativa discal lombar e defender a integração desta técnica na rotina clínico‑imagiológica para a precisa classificação da involução vs degenerescência dos discos L4‑L5 e L5‑S1 em doentes com lombalgia não relacionável com causa mecânica. Material e métodos – O estudo incluiu 102 discos intervertebrais lombares de 123 doentes. Foram estudados 61 discos de L4‑L5, 41 discos de L5‑S1 e 34 discos de D12‑L1. Utilizou‑se um sistema de ressonância magnética de 1,5 T e técnica monovoxel. Obtiveram‑se os rácios [Lac/Nacetyl] e [Nacetyl/(Lac+Lípidos)] e aplicou‑se a ressonância de lípidos para avaliar a bioquímica do disco com o fim de conhecer o estado de involução vs degenerescência que o suscetibilizam para a instabilidade e sobrecarga. Avaliou‑se o comportamento dos rácios e do teor lipídico dos discos L4‑L5‑S1 e as diferenças apresentadas em relação a D12‑L1. Foi também realizada a comparação entre os discos L4‑L5, L5‑S1 e D12‑L1 na ponderação T2 (T2W), segundo a classificação ajustada (1‑4) de Pfirrmann. Resultados – Verificou‑se que os rácios e o valor dos lípidos dos discos L4‑L5‑S1 apresentaram diferenças estatisticamente significativas quando relacionados com os discos D12‑L1. O rácio [Lac/Nacetyl] em L4‑L5‑S1 mostrou‑se aumentado em relação a D12‑L1 (p=0,033 para os discos com grau de involução [1+2] e p=0,004 para os discos com grau [3+4]). Estes resultados sugerem que a involução vs degenerescência dos discos nos graus mais elevados condiciona um decréscimo do pico do Lactato. O rácio [Nacetyl/(Lac+Lip)] discrimina os graus de involução [1+2] do [3+4] no nível L4‑L5, apresentando os valores dos rácios (média 0,65 e 0,5 respetivamente com p=0,04). O rácio médio de [Nacetyl/(Lac+Lip)] dos discos L4‑L5 foi 1,8 vezes mais elevado do que em D12‑L1. O espetro lipídico em L4‑L5‑S1 nos graus mais elevados não mostrou ter uma prevalência constante quanto às frequências de ressonância. Conclusão – A espetroscopia (1H) dos discos intervertebrais poderá ter aplicação na discriminação dos graus de involução vs degenerescência e representar um contributo semiológico importante em suplemento à ponderação T2 convencional. As ressonâncias de lípidos dos discos L4‑L5 e L5‑S1, involuídos ou degenerados, devem ser avaliadas em relação a D12‑L1, utilizando este valor como referência, pois este último é o nível considerado estável e com baixa probabilidade de degenerescência.
Resumo:
OBJECTIVE: To estimate the validity of three single questions used to assess self-reported hearing loss as compared to pure-tone audiometry in an adult population. METHODS: A validity study was performed with a random sub-sample of 188 subjects aged 30 to 65 years, drawn from the fourth wave of a population-based cohort study carried out in Salvador, Northeastern Brazil. Data were collected in household visits using questionnaires. Three questions were used to separately assess self-reported hearing loss: Q1, "Do you feel you have a hearing loss?"; Q2, "In general, would you say your hearing is 'excellent,' 'very good,' 'good,' 'fair,' 'poor'?"; Q3, "Currently, do you think you can hear 'the same as before', 'less than before only in the right ear', 'less than before only in the left ear', 'less than before in both ears'?". Measures of accuracy were estimated through seven measures including Youden index. Responses to each question were compared to the results of pure-tone audiometry to estimate accuracy measures. RESULTS: The estimated sensitivity and specificity were 79.6%, 77.4% for Q1; 66.9%, 85.1% for Q2; and 81.5%, 76.4% for Q3, respectively. The Youden index ranged from 51.9% (Q2) to 57.0% (Q1) and 57.9% (Q3). CONCLUSIONS: Each of all three questions provides responses accurate enough to support their use to assess self-reported hearing loss in epidemiological studies with adult populations when pure-tone audiometry is not feasible.
Resumo:
Food lipid major components are usually analyzed by individual methodologies using diverse extractive procedures for each class. A simple and fast extractive procedure was devised for the sequential analysis of vitamin E, cholesterol, fatty acids, and total fat estimation in seafood, reducing analyses time and organic solvent consumption. Several liquid/liquid-based extractive methodologies using chlorinated and non-chlorinated organic solvents were tested. The extract obtained is used for vitamin E quantification (normal-phase HPLC with fluorescence detection), total cholesterol (normal-phase HPLC with UV detection), fatty acid profile, and total fat estimation (GC-FID), all accomplished in <40 min. The final methodology presents an adequate linearity range and sensitivity for tocopherol and cholesterol, with intra- and inter-day precisions (RSD) from 3 to 11 % for all the components. The developed methodology was applied to diverse seafood samples with positive outcomes, making it a very attractive technique for routine analyses in standard equipped laboratories in the food quality control field.
Resumo:
In this work, we investigated structural, morphological, electrical, and optical properties from a set of Cu2ZnSnS4 thin films grown by sulfurization of metallic precursors deposited on soda lime glass substrates coated with or without molybdenum. X-ray diffraction and Raman spectroscopy measurements revealed the formation of single-phase Cu2ZnSnS4 thin films. A good crystallinity and grain compactness of the film was found by scanning electron microscopy. The grown films are poor in copper and rich in zinc, which is a composition close to that of the Cu2ZnSnS4 solar cells with best reported efficiency. Electrical conductivity and Hall effect measurements showed a high doping level and a strong compensation. The temperature dependence of the free hole concentration showed that the films are nondegenerate. Photoluminescence spectroscopy showed an asymmetric broadband emission. The experimental behavior with increasing excitation power or temperature cannot be explained by donor-acceptor pair transitions. A model of radiative recombination of an electron with a hole bound to an acceptor level, broadened by potential fluctuations of the valence-band edge, was proposed. An ionization energy for the acceptor level in the range 29–40 meV was estimated, and a value of 172 ±2 meV was obtained for the potential fluctuation in the valence-band edge.
Resumo:
In this report, we propose an AC response equivalent circuit model to describe the admittance measurements of Cu2ZnSnS4 thin film solar cell grown by sulphurization of stacked metallic precursors. This circuit describes the contact resistances, the back contact, and the heterojunction with two trap levels. The study of the back contact resistance allowed the estimation of a back contact barrier of 246 meV. The analysis of the trap series with varying temperature revealed defect activation energies of 45 meV and 113 meV. The solar cell’s electrical parameters were obtained from the J-V curve: conversion efficiency, 1.21%; fill factor, 50%; open circuit voltage, 360 mV; and short circuit current density, 6.8 mA/cm2.
Resumo:
We report the results of the growth of Cu-Sn-S ternary chalcogenide compounds by sulfurization of dc magnetron sputtered metallic precursors. Tetragonal Cu2SnS3 forms for a maximum sulfurization temperature of 350 ºC. Cubic Cu2SnS3 is obtained at sulfurization temperatures above 400 ºC. These results are supported by XRD analysis and Raman spectroscopy measurements. The latter analysis shows peaks at 336 cm-1, 351 cm-1 for tetragonal Cu2SnS3, and 303 cm-1, 355 cm-1 for cubic Cu2SnS3. Optical analysis shows that this phase change lowers the band gap from 1.35 eV to 0.98 eV. At higher sulfurization temperatures increased loss of Sn is expected in the sulphide form. As a consequence, higher Cu content ternary compounds like Cu3SnS4 grow. In these conditions, XRD and Raman analysis only detected orthorhombic (Pmn21) phase (petrukite). This compound has Raman peaks at 318 cm-1, 348 cm-1 and 295 cm-1. For a sulfurization temperature of 450 ºC the samples present a multi-phase structure mainly composed by cubic Cu2SnS3 and orthorhombic (Pmn21) Cu3SnS4. For higher temperatures, the samples are single phase and constituted by orthorhombic (Pmn21) Cu3SnS4. Transmittance and reflectance measurements were used to estimate a band gap of 1.60 eV. For comparison we also include the results for Cu2ZnSnS4 obtained using similar growth conditions.
Resumo:
Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
In this paper we survey the most relevant results for the prioritybased schedulability analysis of real-time tasks, both for the fixed and dynamic priority assignment schemes. We give emphasis to the worst-case response time analysis in non-preemptive contexts, which is fundamental for the communication schedulability analysis. We define an architecture to support priority-based scheduling of messages at the application process level of a specific fieldbus communication network, the PROFIBUS. The proposed architecture improves the worst-case messages’ response time, overcoming the limitation of the first-come-first-served (FCFS) PROFIBUS queue implementations.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Graphics processors were originally developed for rendering graphics but have recently evolved towards being an architecture for general-purpose computations. They are also expected to become important parts of embedded systems hardware -- not just for graphics. However, this necessitates the development of appropriate timing analysis techniques which would be required because techniques developed for CPU scheduling are not applicable. The reason is that we are not interested in how long it takes for any given GPU thread to complete, but rather how long it takes for all of them to complete. We therefore develop a simple method for finding an upper bound on the makespan of a group of GPU threads executing the same program and competing for the resources of a single streaming multiprocessor (whose architecture is based on NVIDIA Fermi, with some simplifying assunptions). We then build upon this method to formulate the derivation of the exact worst-case makespan (and corresponding schedule) as an optimization problem. Addressing the issue of tractability, we also present a technique for efficiently computing a safe estimate of the worstcase makespan with minimal pessimism, which may be used when finding an exact value would take too long.