986 resultados para Simultaneous estimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the techniques used to obtain sea surface temperature (SST) retrievals from the Geostationary Operational Environmental Satellite 12 (GOES-12) at the National Oceanic and Atmospheric Administration’s Office of Satellite Data Processing and Distribution. Previous SST retrieval techniques relying on channels at 11 and 12 μm are not applicable because GOES-12 lacks the latter channel. Cloud detection is performed using a Bayesian method exploiting fast-forward modeling of prior clear-sky radiances using numerical weather predictions. The basic retrieval algorithm used at nighttime is based on a linear combination of brightness temperatures at 3.9 and 11 μm. In comparison with traditional split window SSTs (using 11- and 12-μm channels), simulations show that this combination has maximum scatter when observing drier colder scenes, with a comparable overall performance. For daytime retrieval, the same algorithm is applied after estimating and removing the contribution to brightness temperature in the 3.9-μm channel from solar irradiance. The correction is based on radiative transfer simulations and comprises a parameterization for atmospheric scattering and a calculation of ocean surface reflected radiance. Potential use of the 13-μm channel for SST is shown in a simulation study: in conjunction with the 3.9-μm channel, it can reduce the retrieval error by 30%. Some validation results are shown while a companion paper by Maturi et al. shows a detailed analysis of the validation results for the operational algorithms described in this present article.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal estimation (OE) is applied as a technique for retrieving sea surface temperature (SST) from thermal imagery obtained by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on Meteosat 9. OE requires simulation of observations as part of the retrieval process, and this is done here using numerical weather prediction fields and a fast radiative transfer model. Bias correction of the simulated brightness temperatures (BTs) is found to be a necessary step before retrieval, and is achieved by filtered averaging of simulations minus observations over a time period of 20 days and spatial scale of 2.5° in latitude and longitude. Throughout this study, BT observations are clear-sky averages over cells of size 0.5° in latitude and longitude. Results for the OE SST are compared to results using a traditional non-linear retrieval algorithm (“NLSST”), both validated against a set of 30108 night-time matches with drifting buoy observations. For the OE SST the mean difference with respect to drifter SSTs is − 0.01 K and the standard deviation is 0.47 K, compared to − 0.38 K and 0.70 K respectively for the NLSST algorithm. Perhaps more importantly, systematic biases in NLSST with respect to geographical location, atmospheric water vapour and satellite zenith angle are greatly reduced for the OE SST. However, the OE SST is calculated to have a lower sensitivity of retrieved SST to true SST variations than the NLSST. This feature would be a disadvantage for observing SST fronts and diurnal variability, and raises questions as to how best to exploit OE techniques at SEVIRI's full spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal estimation (OE) improves sea surface temperature (SST) estimated from satellite infrared imagery in the “split-window”, in comparison to SST retrieved using the usual multi-channel (MCSST) or non-linear (NLSST) estimators. This is demonstrated using three months of observations of the Advanced Very High Resolution Radiometer (AVHRR) on the first Meteorological Operational satellite (Metop-A), matched in time and space to drifter SSTs collected on the global telecommunications system. There are 32,175 matches. The prior for the OE is forecast atmospheric fields from the Météo-France global numerical weather prediction system (ARPEGE), the forward model is RTTOV8.7, and a reduced state vector comprising SST and total column water vapour (TCWV) is used. Operational NLSST coefficients give mean and standard deviation (SD) of the difference between satellite and drifter SSTs of 0.00 and 0.72 K. The “best possible” NLSST and MCSST coefficients, empirically regressed on the data themselves, give zero mean difference and SDs of 0.66 K and 0.73 K respectively. Significant contributions to the global SD arise from regional systematic errors (biases) of several tenths of kelvin in the NLSST. With no bias corrections to either prior fields or forward model, the SSTs retrieved by OE minus drifter SSTs have mean and SD of − 0.16 and 0.49 K respectively. The reduction in SD below the “best possible” regression results shows that OE deals with structural limitations of the NLSST and MCSST algorithms. Using simple empirical bias corrections to improve the OE, retrieved minus drifter SSTs are obtained with mean and SD of − 0.06 and 0.44 K respectively. Regional biases are greatly reduced, such that the absolute bias is less than 0.1 K in 61% of 10°-latitude by 30°-longitude cells. OE also allows a statistic of the agreement between modelled and measured brightness temperatures to be calculated. We show that this measure is more efficient than the current system of confidence levels at identifying reliable retrievals, and that the best 75% of satellite SSTs by this measure have negligible bias and retrieval error of order 0.25 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews nine software packages with particular reference to their GARCH model estimation accuracy when judged against a respected benchmark. We consider the numerical consistency of GARCH and EGARCH estimation and forecasting. Our results have a number of implications for published research and future software development. Finally, we argue that the establishment of benchmarks for other standard non-linear models is long overdue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual motion cues play an important role in animal and humans locomotion without the need to extract actual ego-motion information. This paper demonstrates a method for estimating the visual motion parameters, namely the Time-To-Contact (TTC), Focus of Expansion (FOE), and image angular velocities, from a sparse optical flow estimation registered from a downward looking camera. The presented method is capable of estimating the visual motion parameters in a complicated 6 degrees of freedom motion and in real time with suitable accuracy for mobile robots visual navigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bollène-2002 Experiment was aimed at developing the use of a radar volume-scanning strategy for conducting radar rainfall estimations in the mountainous regions of France. A developmental radar processing system, called Traitements Régionalisés et Adaptatifs de Données Radar pour l’Hydrologie (Regionalized and Adaptive Radar Data Processing for Hydrological Applications), has been built and several algorithms were specifically produced as part of this project. These algorithms include 1) a clutter identification technique based on the pulse-to-pulse variability of reflectivity Z for noncoherent radar, 2) a coupled procedure for determining a rain partition between convective and widespread rainfall R and the associated normalized vertical profiles of reflectivity, and 3) a method for calculating reflectivity at ground level from reflectivities measured aloft. Several radar processing strategies, including nonadaptive, time-adaptive, and space–time-adaptive variants, have been implemented to assess the performance of these new algorithms. Reference rainfall data were derived from a careful analysis of rain gauge datasets furnished by the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. The assessment criteria for five intense and long-lasting Mediterranean rain events have proven that good quantitative precipitation estimates can be obtained from radar data alone within 100-km range by using well-sited, well-maintained radar systems and sophisticated, physically based data-processing systems. The basic requirements entail performing accurate electronic calibration and stability verification, determining the radar detection domain, achieving efficient clutter elimination, and capturing the vertical structure(s) of reflectivity for the target event. Radar performance was shown to depend on type of rainfall, with better results obtained with deep convective rain systems (Nash coefficients of roughly 0.90 for point radar–rain gauge comparisons at the event time step), as opposed to shallow convective and frontal rain systems (Nash coefficients in the 0.6–0.8 range). In comparison with time-adaptive strategies, the space–time-adaptive strategy yields a very significant reduction in the radar–rain gauge bias while the level of scatter remains basically unchanged. Because the Z–R relationships have not been optimized in this study, results are attributed to an improved processing of spatial variations in the vertical profile of reflectivity. The two main recommendations for future work consist of adapting the rain separation method for radar network operations and documenting Z–R relationships conditional on rainfall type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution proposes a novel probability density function (PDF) estimation based over-sampling (PDFOS) approach for two-class imbalanced classification problems. The classical Parzen-window kernel function is adopted to estimate the PDF of the positive class. Then according to the estimated PDF, synthetic instances are generated as the additional training data. The essential concept is to re-balance the class distribution of the original imbalanced data set under the principle that synthetic data sample follows the same statistical properties. Based on the over-sampled training data, the radial basis function (RBF) classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier’s structure and the parameters of RBF kernels are determined using a particle swarm optimisation algorithm based on the criterion of minimising the leave-one-out misclassification rate. The effectiveness of the proposed PDFOS approach is demonstrated by the empirical study on several imbalanced data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a form of non-contact measurement using two dimensional hall effect sensing to resolve the location of a moving magnet which is part of a ‘magnetic spring’ type suspension system. This work was inspired by the field of Space Robotics, which currently relies on solid link suspension techniques for rover stability. This thesis details the design, development and testing of a novel magnetic suspension system with a possible application in space and terrestrial based robotics, especially when the robot needs to traverse rough terrain. A number of algorithms were developed, to utilize experimental data from testing, that can approximate the separation between magnets in the suspension module through observation of the magnetic fields. Experimental hardware was also developed to demonstrate how two dimensional hall effect sensor arrays could provide accurate feedback, with respects to the magnetic suspension modules operation, so that future work can include the sensor array in a real-time control system to produce dynamic ride control for space robots. The research performed has proven that two dimensional hall effect sensing with respects to magnetic suspension is accurate, effective and suitable for future testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed to estimate Aerosol Optical Depth (AOD), Fine Mode Fraction (FMF) and Single Scattering Albedo (SSA) over land surfaces using simulated Sentinel-3 data. The method uses inversion of a coupled surface/atmosphere radiative transfer model, and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. A method of estimating AOD using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3 and the additional aerosol properties. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground based sun-photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed to estimate aerosol optical depth (AOD) over land surfaces using high spatial resolution, hyperspectral, and multiangle Compact High Resolution Imaging Spectrometer (CHRIS)/Project for On Board Autonomy (PROBA) images. The CHRIS instrument is mounted aboard the PROBA satellite and provides up to 62 bands. The PROBA satellite allows pointing to obtain imagery from five different view angles within a short time interval. The method uses inversion of a coupled surface/atmosphere radiative transfer model and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. This method has previously been demonstrated on data from the Advanced Along-Track Scanning Radiometer and is extended here to the spectral and angular sampling of CHRIS/PROBA. The values obtained from these observations are validated using ground-based sun-photometer measurements. Results from 22 image sets show an rms error of 0.11 in AOD at 550 nm, which is reduced to 0.06 after an automatic screening procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In nature, living creatures are affected by several stimuli simultaneously. The response of living creatures to stimuli is called taxis. In order to reveal the principles of taxis behavior in response to complex stimuli, we simultaneously applied photostimulation and electric stimulation perpendicularly to a Volvox algae solution. The probability distribution of the swimming direction showed that a large population of swimming cells moved in a direction that was the result of the composition of phototaxis and electrotaxis. More surprisingly, we uncovered the coupling of signs of taxis, i.e., coupling of phototaxis and electrotaxis induced positive electrotaxis, which did not emerge in the single stimulation experiments. We qualitatively explained the coupling of taxis based on the polarization of the swimming cells induced by the simultaneous photo- and electric stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to overcome divergence of estimation with the same data, the proposed digital costing process adopts an integrated design of information system to design the process knowledge and costing system together. By employing and extending a widely used international standard, industry foundation classes, the system can provide an integrated process which can harvest information and knowledge of current quantity surveying practice of costing method and data. Knowledge of quantification is encoded from literatures, motivation case and standards. It can reduce the time consumption of current manual practice. The further development will represent the pricing process in a Bayesian Network based knowledge representation approach. The hybrid types of knowledge representation can produce a reliable estimation for construction project. In a practical term, the knowledge management of quantity surveying can improve the system of construction estimation. The theoretical significance of this study lies in the fact that its content and conclusion make it possible to develop an automatic estimation system based on hybrid knowledge representation approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Dietary assessment methods are important tools for nutrition research. Online dietary assessment tools have the potential to become invaluable methods of assessing dietary intake because, compared with traditional methods, they have many advantages including the automatic storage of input data and the immediate generation of nutritional outputs. Objective: The aim of this study was to develop an online food frequency questionnaire (FFQ) for dietary data collection in the “Food4Me” study and to compare this with the validated European Prospective Investigation of Cancer (EPIC) Norfolk printed FFQ. Methods: The Food4Me FFQ used in this analysis was developed to consist of 157 food items. Standardized color photographs were incorporated in the development of the Food4Me FFQ to facilitate accurate quantification of the portion size of each food item. Participants were recruited in two centers (Dublin, Ireland and Reading, United Kingdom) and each received the online Food4Me FFQ and the printed EPIC-Norfolk FFQ in random order. Participants completed the Food4Me FFQ online and, for most food items, participants were requested to choose their usual serving size among seven possibilities from a range of portion size pictures. The level of agreement between the two methods was evaluated for both nutrient and food group intakes using the Bland and Altman method and classification into quartiles of daily intake. Correlations were calculated for nutrient and food group intakes. Results: A total of 113 participants were recruited with a mean age of 30 (SD 10) years (40.7% male, 46/113; 59.3%, 67/113 female). Cross-classification into exact plus adjacent quartiles ranged from 77% to 97% at the nutrient level and 77% to 99% at the food group level. Agreement at the nutrient level was highest for alcohol (97%) and lowest for percent energy from polyunsaturated fatty acids (77%). Crude unadjusted correlations for nutrients ranged between .43 and .86. Agreement at the food group level was highest for “other fruits” (eg, apples, pears, oranges) and lowest for “cakes, pastries, and buns”. For food groups, correlations ranged between .41 and .90. Conclusions: The results demonstrate that the online Food4Me FFQ has good agreement with the validated printed EPIC-Norfolk FFQ for assessing both nutrient and food group intakes, rendering it a useful tool for ranking individuals based on nutrient and food group intakes.