994 resultados para Signal Peptides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report two novel 17-mer amidated linear peptides (TsAP-1 and TsAP-2) whose structures were deduced from cDNAs cloned from a venom-derived cDNA library of the Brazilian yellow scorpion, Tityus serrulatus. Both mature peptides were structurally-characterised following their location in chromatographic fractions of venom and synthetic replicates of each were subjected to a range of biological assays. The peptides were each active against model test micro-organisms but with different potencies. TsAP-1 was of low potency against all three test organisms (MICs 120-160µM), whereas TsAP-2 was of high potency against the Gram-positive bacterium, Staphylococcus aureus (MIC 5µM) and the yeast, Candida albicans (10µM). Haemolytic activity of TsAP-1 was low (4% at 160µM) and in contrast, that of TsAP-2 was considerably higher (18% at 20µM). Substitution of four neutral amino acid residues with Lys residues in each peptide had dramatic effects on their antimicrobial potencies and haemolytic activities, particularly those of TsAP-1. The MICs of the enhanced cationic analogue (TsAP-S1) were 2.5µM for S.aureus/C.albicans and 5µM for E.coli but with an associated large increase in haemolytic activity (30% at 5µM). The same Lys residue substitutions in TsAP-2 produced a dramatic effect on its MIC for E.coli lowering this from >320µM to 5µM. TsAP-1 was ineffective against three of the five human cancer cell lines tested while TsAP-2 inhibited the growth of all five. Lys residue substitution of both peptides enhanced their potency against all five cell lines with TsAp-S2 being the most potent with IC50 values ranging between 0.83 and 2.0 µM. TsAP-1 and TsAP-2 are novel scorpion venom peptides with broad spectrum antimicrobial and anticancer cell activities the potencies of which can be significantly enhanced by increasing their cationicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance (SPR) biosensor. The AuNPs were synthesized and functionalized with HS-OEG(3)-COOH by self assembling technique. Thereafter, the HS-OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti IgG antibody to form an enzyme-immunogold complex. Characterizations were performed by several methods: UV-vis absorption, DLS, HR-TEM and Fr-IR. The Au-anti IgG-HRP complex has been applied in enhancement of SPR immunoassay using a sensor chip constructed by 1:9 molar ratio of HS-OEG(6)-COOH and HS-OEG(3)-OH for detection of anti-GAD antibody. As a result, AuNPs showed their enhancement as being consistent with other previous studies while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. The limit of detection was found as low as 0.03 ng/ml of anti-GAD antibody (or 200 fM) which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-terminal sequence of the Smac/DIABLO protein is known to be involved in binding to the BIR3 domain of the anti-apoptotic proteins IAPs, antagonizing their action. Short peptides and peptide mimetics based on the first 4-residues of Smac/DIABLO have been demonstrated to re-sensitize resistant cancer cells, over-expressing IAPs, to apoptosis. Based on the well-defined structural basis for this interaction, a small focused library of C-terminal capped Smac/DIABLO-derived peptides was designed in silico using docking to the XIAP BIR3 domain. The top-ranked computational hits were conveniently synthesized employing Solid Phase Synthesis (SPS) on an alkane sulfonamide 'Safety-Catch' resin. This novel approach afforded the rapid synthesis of the target peptide library with high flexibility for the introduction of various C-terminal amide-capping groups. The library members were obtained in high yield (>65%) and purity (>85%), upon nucleophilic release from the activated resin by treatment with various amine nucleophiles. In vitro caspase-9 activity reconstitution assays of the peptides in the presence of the recombinant BIR3-domain of human XIAP (500nM) revealed N-methylalanyl-tertiarybutylglycinyl-4-(R)-phenoxyprolyl-N-biphenylmethyl carboxamide (11a) to be the most potent XIAP BIR3 antagonist of the series synthesized inducing 93% recovery of caspase-9 activity, when used at 1µM concentration. Compound (11a) also demonstrated moderate cytotoxicity against the breast cancer cell lines MDA-MB-231 and MCF-7, compared to the Smac/DIABLO-derived wild-type peptide sequences that were totally inactive in the same cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free space transmission of an on-off modulated sinusoidal signal through a phase conjugating lens (PCL) is theoretically examined using a combined time/frequency domain approach. The on-off keyed (OOK) signal is generated by a dipole antenna located in the far-field zone of the lens. The PCL consists of a dual layer of antenna elements interconnected via phase conjugating circuitry. We demonstrate that electromagnetic interference between antenna elements creates spatially localised areas of good-quality reception and zones where the signal is significantly denigrated by interference. Next, it is shown that destructive interference and packet desynchronisation effects critically depend on bit rate. It is also shown that a circular concave lens can be used to produce high-quality signal reception in a given direction while suppressing signal reception in all other directions. The effect that the bandwidth of the phase conjugating unit has on the transmitted signal properties for the cases of high and low bit rate OOK modulation are studied and a signal quality characterisation scheme is proposed which uses cross-correlation. The results of the study yields understanding of the performance of phase conjugating arrays under OOK modulation. The work suggests a novel approach for realising a secure communication wireless system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycation and/or oxidation of LDL may promote diabetic nephropathy. The mitogen-activated protein kinase (MAPK) cascade, which includes extracellular signal-regulated protein kinases (ERKs), modulates cell function. Therefore, we examined the effects of LDL on ERK phosphorylation in cultured rat mesangial cells. In cells exposed to 100 microg/ml native LDL or LDL modified by glycation, and/or mild or marked (copper-mediated) oxidation, ERK activation peaked at 5 min. Five minutes of exposure to 10-100 microg/ml native or modified LDL produced a concentration-dependent (up to sevenfold) increase in ERK activity. Also, 10 microg/ml native LDL and mildly modified LDL (glycated and/or mildly oxidized) produced significantly greater ERK activation than that induced by copper-oxidized LDL +/- glycation (P <0.05). Pretreatment of cells with Src kinase and MAPK kinase inhibitors blocked ERK activation by 50-80% (P <0.05). Native and mildly modified LDL, which are recognized by the native LDL receptor, induced a transient spike of intracellular calcium. Copper-oxidized (+/- glycation) LDL, recognized by the scavenger receptor, induced a sustained rise in intracellular calcium. The intracellular calcium chelator (EGTA/AM) further increased ERK activation by native and mildly modified LDL (P <0.05). These findings demonstrate that native and modified LDL activate ERKs 1 and 2, an early mitogenic signal, in mesangial cells and provide evidence for a potential link between modified LDL and the development of glomerular injury in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sirolimus-eluting stent therapy has achieved considerable success in overcoming coronary artery restenosis. However, there remain a large number of patients presenting with restenosis after the treatment, and the source of its persistence remains unclarified. Although recent evidence supports the contribution of vascular stem/progenitor cells in restenosis formation, their functional and molecular responses to sirolimus are largely unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While load flow conditions vary with different loads, the small-signal stability of the entire system is closely related with to the locations, capacities and models of loads. In this paper, load impacts with different capacities and models on the small-signal stability are analysed. In the real large-scale power system case, the load sensitivity which denotes the sensitivity of the eigenvalue with respect to the load active power is introduced and applied to rank the loads. The loads with high sensitivity are also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method to assess the small signal stability of a power system network by selective determination of the modal eigenvalues. This uses an accelerating polynomial transform, designed using approximate eigenvalues
obtained from a wavelet approximation. Application to the IEEE 14 bus network model produced computational savings of 20%,over the QR algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we conduct a number of experiments to assess the impact of typical human body movements on the signal characteristics of outdoor body-to-body communications channels using flexible patch antennas. A modified log-distance path loss model which accounts for body shadowing and signal fading due to small movements is used to model the measured data. For line of sight channels, in which both ends of the body-to-body link are stationary, the path loss exponent is close to that for free space, although the received signal is noticeably affected by involuntary or physiological-related movements of both persons. When one person moves to obstruct the direct signal path between nodes, attenuation by the person's body can be as great as 40 dB, with even greater variation observed due to fading. The effects of movements such as rotation, tilt, walking in line of sight and non-line of sight on body-to-body communications channels are also investigated in this study. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the application of reduced rank regression to the field of systems biology. A computational approach is used to investigate the mechanisms of the janus-associated kinases/signal transducers and transcription factors (JAK/STAT) and mitogen activated protein kinases (MAPK) signal transduction pathways in hepatic cells stimulated by interleukin-6. The results obtained identify the contribution of individual reactions to the dynamics of the model. These findings are compared to previously available results from sensitivity analysis of the model which focused on the parameters involved and their effect. This application of reduced rank regression allows for an understanding of the individual reaction terms involved in the modelled signal transduction pathways and has the benefit of being computationally inexpensive. The obtained results complement existing findings and also confirm the importance of several protein complexes in the MAPK pathway which hints at benefits that can be achieved by further refining the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While bradykinin has been identified in the skin secretions from several species of amphibian, bradykinin-related peptides (BRPs) are more common constituents. These peptides display a plethora of primary structural variations from the type peptide which include single or multiple amino acid substitutions, N- and/or C-terminal extensions and post-translational modifications such as proline hydroxylation and tyrosine sulfation. Such modified peptides have been reported in species from many families, including Bombinatoridae, Hylidae and Ranidae. The spectrum of these peptides in a given species is thought to be reflective of its predator profile from different vertebrate taxa. Here we report the isolation of BRPs and parallel molecular cloning of their respective biosynthetic precursor-encoding cDNAs from the skin secretions of the Mexican leaf frog (Pachymedusa dacnicolor), the Central American red-eyed leaf frog (Agalychnis callidryas) and the South American orange-legged leaf frog (Phyllomedusa hypochondrialis). Additionally, the eight different BRPs identified were chemically synthesized and screened for bioactivity using four different mammalian smooth muscle preparations and their effects and rank potencies were found to be radically different in these with some acting preferentially through bradykinin B1-type receptors and others through B2-type receptors.