962 resultados para Ship captains.
Resumo:
Sand-sized basaltic glass fragments were recovered in the liner of Core 203-1243B-19R, the deepest recovery from Hole 1243B. Microprobe analysis of 582 glassy cuttings cluster into five compositionally distinct groups, most of which are unlike the lithologic units described on board ship. Drilling operations intended to sweep cuttings from the caving hole and differences between the cuttings and geochemically distinct lithologic units of the upper part of the basement indicate that the cuttings came mainly, if not entirely, from the lower part of the hole. They give information about the part of Hole 1243B that had poor core recovery. Enriched mid-ocean-ridge basalt (MORB) from the upper part of the hole and transitional MORB from two groups of cuttings from sources low in the hole may be a trace of the Galápagos plume on the Pacific plate or may be a normal consequence of eruptions from two distinct magmas on fast-spreading crust.
Resumo:
Basement rocks were recovered at four sites on Leg 115 along the Reunion hotspot track in the western Indian Ocean. Plate tectonic reconstructions indicate that the drilled structures formed in three different volcanic environments. Sites 706 and 713 from the eastern side of the Saya de Malha Bank and the northern end of the Chagos Bank, respectively, are on a large volcanic platform analogous to Iceland on the Mid-Atlantic Ridge. Lavas at Site 707 on the northwestern side of the Saya de Malha Bank erupted during the early stages of rifting of the Seychelles from India. Basalts from Site 715 were erupted onto an isolated oceanic island that was distant from ocean ridges and continents much as Reunion Island is today. Many of the rocks were examined in thin section and found to be primarily augite-plagioclase basalts with minor olivine and rare opaque oxides. Site 715 is unusual in that it contains a variety of basalts including olivine-rich and aphyric Fe-Ti basalts. At each of the four sites the rocks were grouped into chemical types (units) on the basis of ship- board bulk-rock analyses and at least one thin section from each chemical unit was analyzed by electron microprobe. The plagioclase and augite chemistry reflects the bulk-rock chemistry and, in general, these minerals were in equilibrium with their host magmas at the time the basalts were quenched. Olivine was rarely preserved, but where it is still present it also appears to have crystallized in equilibrium with the host magma. At three of the drill sites plagioclase phenocrysts or megacrysts that crystallized from a primitive magma are also present. The one site (715) that does not contain these primitive plagioclase phenocrysts is also the site that appears to have been influenced the least by ocean- ridge or Deccan-type magmas. Site 715, furthermore, has a mineralogy that is dominated by olivine as compared with the plagioclase-rich lavas of the other sites.
Resumo:
During the International ICES Expedition "Overflow '73" a total of 174 samples from 18 stations were collected by R. V. "Meteor" in the waters of the Iceland-Faroe Ridge area. They were filtered on board ship (through 0.4 mym "Nuclepore" filters), then stored in 500 cm**3 quartz bottles (at -20 °C) and analyzed in air-filtered laboratories on land for zinc and cadmium by means of the differential pulse anodic stripping voltammetry technique and copper and iron by flameless atomic absorption spectrometry. The overall averages of 1.9 myg Zn l**-1, 0.07 myg Cd l**-1, 0.5 myg Cu l**-1 and 0.9 myg Fe l**-1 are in good agreement with recent "baseline" studies of open-ocean waters. The mixture of low salinity water masses from the North Iceland Shelf/Arctic Intermediate Waters seem to maintain distinctly lower concentration of Cd, Cu and Fe than the waters from the North Atlantic and the Norwegian Sea where quite similar mean values are found. There is only little evidence for the assumption that overflow events on the ridge are influencing the concentrations of dissolved metals in the near-bottom layers.
Resumo:
C1-C5 hydrocarbons from DSDP Legs 56 and 57 sediment gas pockets were analyzed on board ship. Results suggest that the C2-C5 hydrocarbons accompanied biogenic methane and were generated at low temperatures - less than 50° C - either by microorganisms or by low-temperature chemical reactions. Neopentane, a rare constituent of petroleum, is the major C5 component (about 80%) in much of the sediment at Site 438. This compound, which appeared in smaller amounts at Sites 434, 439, 440, and 441, seems to correlate with either fractured or coarse-grained sediments. Scatter in C4 and C5 isomer ratios and generally good correlation between C3, C4 and C5 components suggest local sources for these molecules.