995 resultados para Shells.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative ?13C values of these carbonates (>?43.5? PDB) indicate methane as major carbon source; ?18O values between 4.04 and 5.88? PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to >49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO42- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (?34S: 21.0-38.6? CDT; ?18O: 9.0-17.6? SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic emissions of carbon dioxide are leading to decreases in pH and changes in the carbonate chemistry of seawater. Ocean acidification may negatively affect the ability of marine organisms to produce calcareous structures while also influencing their physiological responses and growth. The aim of this study was to evaluate the effects of reduced pH on the survival, growth and shell integrity of juveniles of two marine bivalves from the Northern Adriatic sea: the Mediterranean mussel Mytilus galloprovincialis and the striped venus clam Chamelea gallina. An outdoor flow-through plant was set up and two pH levels (natural seawater pH as a control, pH 7.4 as the treatment) were tested in long-term experiments. Mortality was low throughout the first experiment for both mussels and clams, but a significant increase, which was sensibly higher in clams, was observed at the end of the experiment (6 months). Significant decreases in the live weight (-26%) and, surprisingly, in the shell length (-5%) were observed in treated clams, but not in mussels. In the controls of both species, no shell damage was ever recorded; in the treated mussels and clams, damage proceeded via different modes and to different extents. The severity of shell injuries was maximal in the mussels after just 3 months of exposure to a reduced pH, whereas it progressively increased in clams until the end of the experiment. In shells of both species, the damaged area increased throughout the experiment, peaking at 35% in mussels and 11% in clams. The shell thickness of the treated and control animals significantly decreased after 3 months in clams and after 6 months in mussels. In the second experiment (3 months), only juvenile mussels were exposed to a reduced pH. After 3 months, the mussels at a natural pH level or pH 7.4 did not differ in their survival, shell length or live weight. Conversely, shell damage was clearly visible in the treated mussels from the 1st month onward. Monitoring the chemistry of seawater carbonates always showed aragonite undersaturation at 7.4 pH, whereas calcite undersaturation occurred in only 37% of the measurements. The present study highlighted the contrasting effects of acidification in two bivalve species living in the same region, although not exactly in the same habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous anthropogenic CO2 emissions to the atmosphere and uptake by the oceans will cause a reduction of seawater pH and saturation state (Omega) of CaCO3 minerals from which marine calcifiers build their shells and skeletons. Sea urchins use the most soluble form of calcium carbonate, high-magnesium calcite, to build their skeleton, spines and grazing apparatus. In order to highlight the effects of increased pCO2 on the test thickness and carbonate elemental composition of juvenile sea urchins and potential differences in their responses linked to the diet, we performed a laboratory experiment on juvenile Paracentrotus lividus, grazing on calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea, Dictyota dichotoma) macroalgae, under different pH (corresponding to pCO2 values of 390, 550, 750 and 1000 µatm). Results highlighted the importance of the diet in determining sea urchin size irrespectively of the pCO2 level, and the relevance of macroalgal diet in modulating urchin Mg/Ca ratio. The present study provides relevant clues both in terms of the mechanism of mineral incorporation and in terms of bottom-up processes (algal diet) affecting top-down ones (fish predation) in rocky subtidal communities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compositions, structures, and microstructures of different types of phosphorites and poorly phosphatized rocks from low atolls in the near-equatorial part of the Western Indian Ocean are described. The rocks were examined under optical and scanning microscopes using microprobe techniques and etching of selected samples with weak solvents as well as with the help of chemical analyses. It is proved that phosphorites have been formed owing to the uneven phosphatization of primary carbonate rocks; degree of their phosphatization ranges from traces to 40% P2O5. In the phosphorites numerous organic remains were encountered; they included fragments of plankton, debris of tortoise shells, and coccoidal and filamentous bacteria-like formations. It is suggested that the phosphorites formed due to high local biological productivity over the outer edges of coral reefs and are not related to guano accumulation or to endoupwelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure (pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg/m**2/year. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthropogenic ocean acidification is likely to have negative effects on marine calcifying organisms, such as shelled pteropods, by promoting dissolution of aragonite shells. Study of shell dissolution requires an accurate and sensitive method for assessing shell damage. Shell dissolution was induced through incubations in CO2 enriched seawater for between 4 and 14 days. We describe a procedure that allows the level of dissolution to be assessed and classified into three main types: Type I with partial dissolution of the prismatic layer; Type II with exposure of underlying crossed-lamellar layer, and Type III, where crossed-lamellar layer shows signs of dissolution. Levels of dissolution showed a good correspondence to the incubation conditions, with the most severe damage found in specimens held for 14 d in undersaturated condition (Ohm ~ 0.8). This methodology enables the response of small pelagic calcifiers to acidified conditions to be detected at an early stage, thus making pteropods a valuable bioindicator of future ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification is anticipated to decrease calcification and increase dissolution of shelled molluscs. Molluscs with thinner and weaker shells may be more susceptible to predation, but not all studies have measured negative responses of molluscs to elevated pCO2. Recent studies measuring the response of molluscs have found greater variability at the population level than first expected. Here we investigate the impact of acidification on the predatory whelk Morula marginalba and genetically distinct subpopulations of the Pacific oyster Crassostrea gigas. Whelks and eight family lines of C. gigas were separately exposed to ambient (385 ppm) and elevated (1000 ppm) pCO2 for 6 weeks. Following this period, individuals of M. marginalba were transferred into tanks with oysters at ambient and elevated pCO2 for 17 days. The increase in shell height of the oysters was on average 63% less at elevated compared to ambient pCO2. There were differences in shell compression strength, thickness, and mass among family lines of C. gigas, with sometimes an interaction between pCO2 and family line. Against expectations, this study found increased shell strength in the prey and reduced shell strength in the predator at elevated compared to ambient pCO2. After 10 days, the whelks consumed significantly more oysters regardless of whether C. gigas had been exposed to ambient or elevated CO2, but this was not dependent on the family line and the effect was not significant after 17 days. Our study found an increase in predation after exposure of the predator to predicted near-future levels of estuarine pCO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AnewRelativisticScreenedHydrogenicModel has been developed to calculate atomic data needed to compute the optical and thermodynamic properties of high energy density plasmas. The model is based on anewset of universal screeningconstants, including nlj-splitting that has been obtained by fitting to a large database of ionization potentials and excitation energies. This database was built with energies compiled from the National Institute of Standards and Technology (NIST) database of experimental atomic energy levels, and energies calculated with the Flexible Atomic Code (FAC). The screeningconstants have been computed up to the 5p3/2 subshell using a Genetic Algorithm technique with an objective function designed to minimize both the relative error and the maximum error. To select the best set of screeningconstants some additional physical criteria has been applied, which are based on the reproduction of the filling order of the shells and on obtaining the best ground state configuration. A statistical error analysis has been performed to test the model, which indicated that approximately 88% of the data lie within a ±10% error interval. We validate the model by comparing the results with ionization energies, transition energies, and wave functions computed using sophisticated self-consistent codes and experimental data.