999 resultados para Secondary calibration
Resumo:
The common GIS-based approach to regional analyses of soil organic carbon (SOC) stocks and changes is to define geographic layers for which unique sets of driving variables are derived, which include land use, climate, and soils. These GIS layers, with their associated attribute data, can then be fed into a range of empirical and dynamic models. Common methodologies for collating and formatting regional data sets on land use, climate, and soils were adopted for the project Assessment of Soil Organic Carbon Stocks and Changes at National Scale (GEFSOC). This permitted the development of a uniform protocol for handling the various input for the dynamic GEFSOC Modelling System. Consistent soil data sets for Amazon-Brazil, the Indo-Gangetic Plains (IGP) of India, Jordan and Kenya, the case study areas considered in the GEFSOC project, were prepared using methodologies developed for the World Soils and Terrain Database (SOTER). The approach involved three main stages: (1) compiling new soil geographic and attribute data in SOTER format; (2) using expert estimates and common sense to fill selected gaps in the measured or primary data; (3) using a scheme of taxonomy-based pedotransfer rules and expert-rules to derive soil parameter estimates for similar soil units with missing soil analytical data. The most appropriate approach varied from country to country, depending largely on the overall accessibility and quality of the primary soil data available in the case study areas. The secondary SOTER data sets discussed here are appropriate for a wide range of environmental applications at national scale. These include agro-ecological zoning, land evaluation, modelling of soil C stocks and changes, and studies of soil vulnerability to pollution. Estimates of national-scale stocks of SOC, calculated using SOTER methods, are presented as a first example of database application. Independent estimates of SOC stocks are needed to evaluate the outcome of the GEFSOC Modelling System for current conditions of land use and climate. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A collection of 24 seawaters from various worldwide locations and differing depth was culled to measure their chlorine isotopic composition (delta(37)Cl). These samples cover all the oceans and large seas: Atlantic, Pacific, Indian and Antarctic oceans, Mediterranean and Red seas. This collection includes nine seawaters from three depth profiles down to 4560 mbsl. The standard deviation (2sigma) of the delta(37)Cl of this collection is +/-0.08 parts per thousand, which is in fact as large as our precision of measurement ( +/- 0.10 parts per thousand). Thus, within error, oceanic waters seem to be an homogeneous reservoir. According to our results, any seawater could be representative of Standard Mean Ocean Chloride (SMOC) and could be used as a reference standard. An extended international cross-calibration over a large range of delta(37)Cl has been completed. For this purpose, geological fluid samples of various chemical compositions and a manufactured CH3Cl gas sample, with delta(37)Cl from about -6 parts per thousand to +6 parts per thousand have been compared. Data were collected by gas source isotope ratio mass spectrometry (IRMS) at the Paris, Reading and Utrecht laboratories and by thermal ionization mass spectrometry (TIMS) at the Leeds laboratory. Comparison of IRMS values over the range -5.3 parts per thousand to +1.4 parts per thousand plots on the Y=X line, showing a very good agreement between the three laboratories. On 11 samples, the trend line between Paris and Reading Universities is: delta(37)Cl(Reading)= (1.007 +/- 0.009)delta(37)Cl(Paris) - (0.040 +/- 0.025), with a correlation coefficient: R-2 = 0.999. TIMS values from Leeds University have been compared to IRMS values from Paris University over the range -3.0 parts per thousand to +6.0 parts per thousand. On six samples, the agreement between these two laboratories, using different techniques is good: delta(37)Cl(Leeds)=(1.052 +/- 0.038)delta(37)Cl(Paris) + (0.058 +/- 0.099), with a correlation coefficient: R-2 = 0.995. The present study completes a previous cross-calibration between the Leeds and Reading laboratories to compare TIMS and IRMS results (Anal. Chem. 72 (2000) 2261). Both studies allow a comparison of IRMS and TIMS techniques between delta(37)Cl values from -4.4 parts per thousand to +6.0 parts per thousand and show a good agreement: delta(37)Cl(TIMS)=(1.039 +/- 0.023)delta(37)Cl(IRMS)+(0.059 +/- 0.056), with a correlation coefficient: R-2 = 0.996. Our study shows that, for fluid samples, if chlorine isotopic compositions are near 0 parts per thousand, their measurements either by IRMS or TIMS will give comparable results within less than +/- 0.10 parts per thousand, while for delta(37)Cl values as far as 10 parts per thousand (either positive or negative) from SMOC, both techniques will agree within less than +/- 0.30 parts per thousand. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper considers the potential contribution of secondary quantitative analyses of large scale surveys to the investigation of 'other' childhoods. Exploring other childhoods involves investigating the experience of young people who are unequally positioned in relation to multiple, embodied, identity locations, such as (dis)ability, 'class', gender, sexuality, ethnicity and race. Despite some possible advantages of utilising extensive databases, the paper outlines a number of methodological problems with existing surveys which tend to reinforce adultist and broader hierarchical social relations. It is contended that scholars of children's geographies could overcome some of these problematic aspects of secondary data sources by endeavouring to transform the research relations of large scale surveys. Such endeavours would present new theoretical, ethical and methodological complexities, which are briefly considered.
Resumo:
Leaf-cutting ants consume up to 10% of canopy leaves in the foraging area of their colony and therefore represent a key perturbation in the nutrient cycle of tropical forests. We used a chronosequence of nest sites on Barro, Colorado Island, Panama, to assess the influence of leaf-cutting ants (Atta colombica) on nutrient availability in a neotropical rainforest. Twelve nest sites were sampled, including active nests, recently abandoned nests (<1 year) and long-abandoned nests (>1 year). Waste material discarded by the ants down-slope from the nests contained large concentrations of nitrogen and phosphorus in both total and soluble forms, but decomposed within one year after the nests were abandoned. Despite this, soil under the waste material contained high concentrations of nitrate and ammonium that persisted after the disappearance of the waste, although soluble phosphate returned to background concentrations within one year of nest abandonment. Fine roots were more abundant in soil under waste than control soils up to one year after nest abandonment, but were not significantly different for older sites. In contrast to the waste dumps, soil above the underground nest chambers consistently contained lower nutrient concentrations than control soils, although this was not statistically significant. We conclude that the 'islands of fertility' created by leaf-cutting ants provide a nutritional benefit to nearby plants for less than one year after nest abandonment in the moist tropical environment of Barro Colorado Island. Published by Elsevier Ltd.
Resumo:
New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0-26 cal kyr BP (Before Present, 0 cal. BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0-10.5 call kyr BR Beyond 10.5 cal kyr BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific C-14 reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 cal kyr BR A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).
Resumo:
This update on radiocarbon calibration results from the 19th International Radiocarbon Conference at Oxford in April 2006, and is essential reading for all archaeologists. The way radiocarbon dates and absolute dates relate to each other differs in three periods: back to 12400 cal BR radiocarbon dates can be calibrated with tree rings, and the calibration curve in this form should soon extend back to 18 000 cal BP Between 12 400 and 26000 cal BR the calibration curves are based on marine records, and thus are only a best estimate of atmospheric concentrations. Beyond 26000 cal BR dates have to be based on comparison (rather than calibration) with a variety of records. Radical variations are thus possible in this period, a highly significant caveat,for the dating of middle and lower Paleolithic art, artefacts and animal and human remains.
Resumo:
A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace ImCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than ImCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to ImCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine 04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).
Resumo:
Water quality models generally require a relatively large number of parameters to define their functional relationships, and since prior information on parameter values is limited, these are commonly defined by fitting the model to observed data. In this paper, the identifiability of water quality parameters and the associated uncertainty in model simulations are investigated. A modification to the water quality model `Quality Simulation Along River Systems' is presented in which an improved flow component is used within the existing water quality model framework. The performance of the model is evaluated in an application to the Bedford Ouse river, UK, using a Monte-Carlo analysis toolbox. The essential framework of the model proved to be sound, and calibration and validation performance was generally good. However some supposedly important water quality parameters associated with algal activity were found to be completely insensitive, and hence non-identifiable, within the model structure, while others (nitrification and sedimentation) had optimum values at or close to zero, indicating that those processes were not detectable from the data set examined. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A new method of measuring the total conductivity of atmospheric air is described. It depends on determination of the electrical relaxation time of a horizontal wire, mounted between two insulators, which is initially grounded and then allowed to charge freely. The total air conductivity derived is compared with that from an ion mobility spectrometer. Results from the two techniques agreed to within 1.2 fS m(-1). (c) 2006 American Institute of Physics.