936 resultados para Season.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near infrared (NIR) spectroscopy was investigated as a potential rapid method of estimating fish age from whole otoliths of Saddletail snapper (Lutjanus malabaricus). Whole otoliths from 209 Saddletail snapper were extracted and the NIR spectral characteristics were acquired over a spectral range of 800–2780 nm. Partial least-squares models (PLS) were developed from the diffuse reflectance spectra and reference-validated age estimates (based on traditional sectioned otolith increments) to predict age for independent otolith samples. Predictive models developed for a specific season and geographical location performed poorly against a different season and geographical location. However, overall PLS regression statistics for predicting a combined population incorporating both geographic location and season variables were: coefficient of determination (R2) = 0.94, root mean square error of prediction (RMSEP) = 1.54 for age estimation, indicating that Saddletail age could be predicted within 1.5 increment counts. This level of accuracy suggests the method warrants further development for Saddletail snapper and may have potential for other fish species. A rapid method of fish age estimation could have the potential to reduce greatly both costs of time and materials in the assessment and management of commercial fisheries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser. Elevated emissions of nitrous oxide (N2O) can be expected as a consequence. In order to mitigate N2O emissions from fertilised agricultural fields, the use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted. However, no data is currently available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment was conducted to investigate the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on N2O emissions and yield from broccoli production in sub-tropical Australia. Soil N2O fluxes were monitored continuously (3 h sampling frequency) with fully automated, pneumatically operated measuring chambers linked to a sampling control system and a gas chromatograph. Cumulative N2O emissions over the 5 month observation period amounted to 298 g-N/ha, 324 g-N/ha, 411 g-N/ha and 463 g-N/ha in the conventional fertiliser (CONV), the DMPP treatment (DMPP), the DMMP treatment with a 10% reduced fertiliser rate (DMPP-red) and the zero fertiliser (0N), respectively. The temporal variation of N2O fluxes showed only low emissions over the broccoli cropping phase, but significantly elevated emissions were observed in all treatments following broccoli residues being incorporated into the soil. Overall 70–90% of the total emissions occurred in this 5 weeks fallow phase. There was a significant inhibition effect of DMPP on N2O emissions and soil mineral N content over the broccoli cropping phase where the application of DMPP reduced N2O emissions by 75% compared to the standard practice. However, there was no statistical difference between the treatments during the fallow phase or when the whole season was considered. This study shows that DMPP has the potential to reduce N2O emissions from intensive vegetable systems, but also highlights the importance of post-harvest emissions from incorporated vegetable residues. N2O mitigation strategies in vegetable systems need to target these post-harvest emissions and a better evaluation of the effect of nitrification inhibitors over the fallow phase is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Short and variable vase life of cut Acacia holosericea foliage stems limits its commercial potential. Retrospective evaluation of factors affecting the vase life of this cut foliage line was assessed using primary data collected from 30 individual experiments. These data had been collected by four different researchers over 17 months, from late Summer to mid Winter across two consecutive years. Vase life data of cut A. holosericea stems held in deionised water (DIW) was analysed for general vase life variation and to define the most influential factor affecting vase life of the cut stems. Meanwhile, vase life of cut stems exposed to various chemical and physical postharvest treatments was analysed using meta-analysis to evaluate their efficacy in prolonging vase life of the stems. The overall mean vase life (±standard deviation) of cut A. holosericea stems was 6.4 ± 1.2 days (n = 30 trials). Longer vase life of ≥7 days was obtained from cut stems harvested at vegetative and flowering stage, which was between Summer and Autumn. Cut stems harvested at fruiting stage, between Winter and Spring displayed shorter vase life of ≤5.5 days. Mixed model analysis indicated that vase life variation of the cut stems was mostly determined by season (P < 0.001). In averaged, postharvest treatments increased vase life 1.4-fold compared to stems in DIW, with 68.32% had a large positive treatment effect size (d). Among the treatments, nano silver (NS) and copper (Cu2+) were the most beneficial to vase life. Retrospective analysis was found to be beneficial for identifying conditions and targeting practices to maximise the vase life of cut A. holosericea and, potentially for other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The critical crop-weed competition period in a dry-seeded rice system is an important consideration in formulating weed management strategies. Field experiments were conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to determine the extent of yield loss in two different rice cultivars (PR 114 and PR 115) with different periods of weed interference. Twelve weed control timings were used to identify critical periods of weed competition in dry-seeded rice. PR 114, a long-duration rice cultivar (145 d) having slower initial growth than PR 115 (125 d), was more prone to yield losses. In both years, 100% yield loss was observed where weeds were not controlled throughout the season. In weed-free plots, the grain yield of PR 114 was 6.39-6.80 t ha-1, for PR 115, it was 6.49-6.87 t ha-1. Gompertz and logistic equations fitted to yield data in response to increasing periods of weed control and weed interference showed that, PR 114 had longer critical periods than PR 115. Critical weed-free periods to achieve 95% of weed-free yield for PR 114 was longer than for PR 115 by 31 days in 2012 and 26 days in 2013. Weed infestation also influenced the duration of critical periods. Higher weed pressure in 2012 than in 2013 increased the duration of the critical period of crop-weed competition in that year. The identification of critical crop-weed competition periods for different cultivars will facilitate improved decision-making regarding the timing of weed control and the adoption of cultivars having high weed-suppressing abilities. This will also contribute to the development of integrated weed management in dry-seeded rice systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between sexual reproduction of littoral chydorid cladocerans (Anomopoda, Chydoridae) and environmental factors in aquatic ecosystems has been rarely studied, although the sexual behavior of some planktonic cladocerans is well documented. Ecological monitoring was used to study the relationship between climate-related and non-climatic environmental factors and chydorid sexual reproduction patterns in nine environmentally different lakes that were closely situated to each other in southern Finland. Furthermore, paleolimnological ephippium analysis was used to clarify how current sexual reproduction is reflected in surface sediments of the same nine lakes. Additionally, short sediment cores from two of the lakes were studied with ephippium analysis to examine how recent climate-related and non-climatic environmental changes were reflected in chydorid sexual reproduction. Ephippium analysis uses the subfossil shells of asexual individuals to represent asexual reproduction and the shells of sexual females, i.e. ephippia, to represent sexual reproduction. The relative proportion of ephippia of all chydorid species, i.e. total chydorid ephippia (TCE) indicates the relative proportion of sexual reproduction during the open-water season. This thesis is part of the EPHIPPIUM-project which aims to develop ephippium analysis towards a quantitative climate reconstruction tool. To be able to develop a valid climate model, the influence of the environmental stressors other than climate on contemporary sexual reproduction and its reflection in sediment assemblages must be clarified so they can be eliminated from the model. During contemporary monitoring a few sexual individuals were observed during summer, apparently forced to sexual reproduction by non-climatic local environmental factors, such as crowding or invertebrate predation. Monitoring also revealed that the autumnal chydorid sexual reproduction period was consistent between the different lakes and climate-related factors appeared to act as the main inducers and regulators of autumnal sexual reproduction. However, during autumn, chydorid species and populations among the lakes exhibited a wide variation in the intensity, induction time, and length of autumnal sexual reproduction. These variations apparently act as mechanisms for local adaptations due to the genetic variability provided by sexual reproduction that enhance the ecological flexibility of chydorid species, allowing them to inhabit a wide range of environments. A large variation was also detected in the abundance of parthenogenetic and gamogenetic individuals during the open-water season among the lakes. On the basis of surface sediment samples, the general level of the TCE is ca. 3-4% in southern Finland, reflecting an average proportion of sexual reproduction in this specific climate. The variation in the TCE was much lower than could be expected on the basis of the monitoring results. This suggests that some of the variation detected by monitoring may derive from differences between sampling sites and years smoothed out in the sediment samples, providing an average of the entire lake area and several years. The TCE is always connected to various ecological interactions in lake ecosystems and therefore is always lake-specific. Hypothetically, deterioration of climate conditions can be detected in the TCE as an increase in ephippia of all chydorid species, since a shortening open-water season is reflected in the relative proportions of the two reproduction modes. Such an increase was clearly detected for the time period of the Little Ice Age in a sediment core. The paleolimnological results also indicated that TCE can suddenly increase due to ephippia of one or two species, which suggests that at least some chydorids can somehow increase the production of resting eggs under local environmental stress. Thus, some environmental factors may act as species-specific environmental stressors. The actual mechanism of the increased sexual reproduction seen in sediments has been unknown but the present study suggests that the mechanism is probably the increased intensity of gamogenesis, i.e. that a larger proportion of individuals in autumnal populations reproduce sexually, which results in a larger proportion of ephippia in sediments and a higher TCE. The results of this thesis demonstrate the utility of ephippium analysis as a paleoclimatological method which may also detect paleolimnological changes by identifying species-specific environmental stressors. For a quantitative TCE-based climate reconstruction model, the natural variation in the TCE of surface sediments in different climates must be clarified with more extensive studies. In addition, it is important to recognize the lakes where the TCE is not only a reflection of the length of the open-water season, but is also non-climatically forced. The results of ephippium analysis should always be interpreted in a lake-specific manner and in the context of other paleoecological proxies.