936 resultados para Science participation
Resumo:
Electronic states of CeO(2), Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) , and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) electrodes have been investigated by X-ray photoelectron spectroscopy as a function of applied potential for oxygen evolution and formic acid and methanol oxidation. Ionically dispersed platinum in Ce(1 -aEuro parts per thousand x) Pt (x) O(2 -aEuro parts per thousand delta) and Ce(1 -aEuro parts per thousand x -aEuro parts per thousand y) Ti (y) Pt (x) O(2 -aEuro parts per thousand delta) is active toward these reactions compared with CeO(2) alone. Higher electrocatalytic activity of Pt(2+) ions in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) compared with the same amount of Pt(0) in Pt/C is attributed to Pt(2+) ion interaction with CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) to activate the lattice oxygen of the support oxide. Utilization of this activated lattice oxygen has been demonstrated in terms of high oxygen evolution in acid medium with these catalysts. Further, ionic platinum in CeO(2) and Ce(1 -aEuro parts per thousand x) Ti (x) O(2) does not suffer from CO poisoning effect unlike Pt(0) in Pt/C due to participation of activated lattice oxygen which oxidizes the intermediate CO to CO(2). Hence, higher activity is observed toward formic acid and methanol oxidation compared with same amount of Pt metal in Pt/C.
Resumo:
When an Indian prime minister publicly admits that India has fallen behind China, it is news. Manmohan Singh's statement last January at the Indian Science Congress in Bhubaneswar that this is so with respect to scientific research, and that “India's relative position in the world of science has been declining”, has rung alarm bells. Singh was not springing anything new on Indian scientists; many of us will admit that things are not well1. Recognizing the problem is the first step towards reversing this slide.
Resumo:
The assignment of tasks to multiple resources becomes an interesting game theoretic problem, when both the task owner and the resources are strategic. In the classical, nonstrategic setting, where the states of the tasks and resources are observable by the controller, this problem is that of finding an optimal policy for a Markov decision process (MDP). When the states are held by strategic agents, the problem of an efficient task allocation extends beyond that of solving an MDP and becomes that of designing a mechanism. Motivated by this fact, we propose a general mechanism which decides on an allocation rule for the tasks and resources and a payment rule to incentivize agents' participation and truthful reports. In contrast to related dynamic strategic control problems studied in recent literature, the problem studied here has interdependent values: the benefit of an allocation to the task owner is not simply a function of the characteristics of the task itself and the allocation, but also of the state of the resources. We introduce a dynamic extension of Mezzetti's two phase mechanism for interdependent valuations. In this changed setting, the proposed dynamic mechanism is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.
Resumo:
The basic framework and - conceptual understanding of the metallurgy of Ti alloys is strong and this has enabled the use of titanium and its alloys in safety-critical structures such as those in aircraft and aircraft engines. Nevertheless, a focus on cost-effectiveness and the compression of product development time by effectively integrating design with manufacturing in these applications, as well as those emerging in bioengineering, has driven research in recent decades towards a greater predictive capability through the use of computational materials engineering tools. Therefore this paper focuses on the complexity and variety of fundamental phenomena in this material system with a focus on phase transformations and mechanical behaviour in order to delineate the challenges that lie ahead in achieving these goals. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mechanism of ion transport in glasses continues to be incompletely understood. Several of the theoretical models in vogue fail to rationalize conductivity behaviour when d.c. and a.c. measurements are considered together. While they seem to involve the presence of at least two components in d.c. activation energy, experiments fail to reveal that feature. Further, only minor importance is given to the influence of structure of the glass on the ionic conductivity behaviour. In this paper, we have examined several general aspects of ion transport taking the example of ionically conducting glasses in pseudo binary, yNa(2)B(4)O(7)center dot(1-y) M (a) O (b) (with y = 0 center dot 25-0 center dot 79 and M (a) O (b) = PbO, TeO2 and Bi2O3) system of glasses which have also been recently characterized. Ion transport in them has been studied in detail. We have proposed that non-bridging oxygen (NBO) participation is crucial to the understanding of the observed conductivity behaviour. NBO-BO switching is projected as the first important step in ion transport and alkali ion jump is a subsequent event with a characteristically lower barrier which is, therefore, not observed in any study. All important observations in d.c. and a.c. transport in glasses are found consistent with this model.
Resumo:
The 2004 Sumatra-Andaman earthquake was unprecedented in terms of its magnitude (M-w 9.2), rupture length along the plate boundary (1300 km) and size of the resultant tsunami. Since 2004, efforts are being made to improve the understanding of the seismic hazard in the Sumatra-Andaman subduction zone in terms of recurrence patterns of major earthquakes and tsunamis. It is reasonable to assume that previous earthquake events in the Myanmar Andaman segment must be preserved in the geological record in the form of seismo-turbidite sequences. Here we present the prospects of conducting deep ocean palaeoseismicity investigations in order to refine the quantification of the recurrence pattern of large subduction-zone earthquakes along the Andaman-Myanmar arc. Our participation in the Sagar Kanya cruise SK-273 (in June 2010) was to test the efficacy of such a survey. The primary mission of the cruise, along a short length (300 km) of the Sumatra Andaman subduction front was to collect bathymetric data of the ocean floor trenchward of the Andaman Islands. The agenda of our piggyback survey was to fix potential coring sites that might preserve seismo-turbidite deposits. In this article we present the possibilities and challenges of such an exercise and our first-hand experience of such a preliminary survey. This account will help future researchers with similar scientific objectives who would want to survey the deep ocean archives of this region for evidence of extreme events like major earthquakes.