970 resultados para STOMATAL CONDUCTANCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human HeLa cells transfected with mouse connexin45 were used to explore the experimental conditions suitable to measure currents carried by gap junction hemichannels. Experiments were performed with a voltage-clamp technique and whole-cell recording. Lowering [Ca(2+)](o) from 2 mM to 20 nM evoked an extra current, I (m), putatively carried by Cx45 hemichannels. However, the variability of I (m) (size, voltage sensitivity, kinetics) suggested the involvement of other channels. The finding that growth medium in the incubator increased the osmolarity with time implied that volume-regulated anion channels (VRAC) may participate. This assumption was reinforced by the following observations. On the one hand, keeping [Ca(2+)](o) normal while the osmolarity of the extracellular solution was reduced from 310 to 290 mOsm yielded a current characteristic of VRAC; I (VRAC) activated/deactivated at negative/positive voltage, giving rise to the conductance functions g (VRAC,inst)=f(V (m)) (inst: instantaneous; V (m): membrane potential) and g (VRAC,ss)=f(V (m)) (ss: steady state). Moreover, it was reversibly inhibited by mibefradil, a Cl(-)channel blocker (binding constant K (d)=38 microM, Hill coefficient n=12), but not by the gap junction channel blocker 18alpha-glycyrrhetinic acid. On the other hand, minimizing the osmotic imbalance while [Ca(2+)](o) was reduced led to a current typical for Cx45 hemichannels; I (hc) activated/deactivated at positive/negative voltage. Furthermore, it was reversibly inhibited by 18alpha-glycyrrhetinic acid or palmitoleic acid, but not by mibefradil. Computations based on g (VRAC,ss)=f(V (m)) and g (hc,ss)=f(V (m)) indicated that the concomitant operation of both currents results in a bell-shaped conductance-voltage relationship. The functional implications of the data presented are discussed. Conceivably, VRAC and hemichannels are involved in a common signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous work has reported that in the Iowa gambling task (IGT) advantageous decisions may be taken before the advantageous strategy is known [Bechara, A., Damasio, H., Tranel, D., ; Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293-1295]. In order to test whether explicit memory is essential for the acquisition of a behavioural preference for advantageous choices, we measured behavioural performance and skin conductance responses (SCRs) in five patients with dense amnesia following damage to the basal forebrain and orbitofrontal cortex, six amnesic patients with damage to the medial temporal lobe or the diencephalon, and eight control subjects performing the IGT. Across 100 trials healthy participants acquired a preference for advantageous choices and generated large SCRs to high levels of punishment. In addition, their anticipatory SCRs to disadvantageous choices were larger than to advantageous choices. However, this dissociation occurred much later than the behavioural preference for advantageous alternatives. In contrast, though exhibiting discriminatory autonomic SCRs to different levels of punishment, 9 of 11 amnesic patients performed at chance and did not show differential anticipatory SCRs to advantageous and disadvantageous choices. Further, the magnitude of anticipatory SCRs did not correlate with behavioural performance. These results suggest that the acquisition of a behavioural preference--be it for advantageous or disadvantageous choices--depends on the memory of previous reinforcements encountered in the task, a capacity requiring intact explicit memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a fast and unambiguous method for haplotyping the (TG)mTn repeat in IVS8 and determining three other single nucleotide polymorphisms (SNPs) in exons 10, 14a and 24 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affecting correct splicing of the CFTR pre-mRNA using primer extension and mass spectrometry. The diagnostic products are generated by primer extension (PEX) reactions, which require a single detection primer complementary to a region downstream of a target strand's variable site. On addition of a polymerase and an appropriate mixture of dNTP's and 2', 3'-dideoxynucleotide triphosphates (ddNTP's), the primer is extended through the mutation region until the first ddNTP is incorporated and the mass of the extension products determines the composition of the variable site. Analysis of patient DNA assigned the correct and unambiguous haplotype for the (TG)mTn repeat in intron 8 of the CFTR gene. Additional crucial SNPs influencing correct splicing in exon 10, 14 and 24 can easily be detected by biplexing the assay to genotype allelic variants important for correct splicing of the CFTR pre-mRNA. Different PEX reactions with subsequent mass spectrometry generate sufficient data, to enable unambiguous and easy haplotyping of the (TG)mTn repeat in the CFTR gene. The method can be easily extended to the inclusion of additional SNPs of interest by biplexing some of the PEX reactions. All experimental steps required for PEX are amenable to the high degree of automation desirable for a high-throughput diagnostic setting, facilitating the work of clinicians involved in the diagnosis of non-classic cystic fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vitamin D(3) and nicotine (VDN) model is one of isolated systolic hypertension (ISH) in which arterial calcification raises arterial stiffness and vascular impedance. The effects of VDN treatment on arterial and cardiac hemodynamics have been investigated; however, a complete analysis of ventricular-arterial interaction is lacking. Wistar rats were treated with VDN (VDN group, n = 9), and a control group (n = 10) was included without the VDN. At week 8, invasive indexes of cardiac function were obtained using a conductance catheter. Simultaneously, aortic pressure and flow were measured to derive vascular impedance and characterize ventricular-vascular interaction. VDN caused significant increases in systolic (138 +/- 6 vs. 116 +/- 13 mmHg, P < 0.01) and pulse (42 +/- 10 vs. 26 +/- 4 mmHg, P < 0.01) pressures with respect to control. Total arterial compliance decreased (0.12 +/- 0.08 vs. 0.21 +/- 0.04 ml/mmHg in control, P < 0.05), and pulse wave velocity increased significantly (8.8 +/- 2.5 vs. 5.1 +/- 2.0 m/s in control, P < 0.05). The arterial elastance and end-systolic elastance rose significantly in the VDN group (P < 0.05). Wave reflection was augmented in the VDN group, as reflected by the increase in the wave reflection coefficient (0.63 +/- 0.06 vs. 0.52 +/- 0.05 in control, P < 0.05) and the amplitude of the reflected pressure wave (13.3 +/- 3.1 vs. 8.4 +/- 1.0 mmHg in control, P < 0.05). We studied ventricular-arterial coupling in a VDN-induced rat model of reduced arterial compliance. The VDN treatment led to development of ISH and provoked alterations in cardiac function, arterial impedance, arterial function, and ventricular-arterial interaction, which in many aspects are similar to effects of an aged and stiffened arterial tree.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: It is well known that there are specific peripheral activation patterns associated with the emotional valence of sounds. However, it is unclear how these effects adapt over time. The personality traits influencing these processes are also not clear. Anxiety disorders influence the autonomic activation related to emotional processing. However, personality anxiety traits have never been studied in the context of affective auditory stimuli. METHODS: Heart rate, skin conductance, zygomatic muscle activity and subjective rating of emotional valence and arousal were recorded in healthy subjects during the presentation of pleasant, unpleasant, and neutral sounds. Recordings were repeated 1 week later to examine possible time-dependent changes related to habituation and sensitization processes. RESULTS AND CONCLUSION: There was not a generalized habituation or sensitization process related to the repeated presentation of affective sounds, but rather, specific adaptation processes for each physiological measure. These observations are consistent with previous studies performed with affective pictures and simple tones. Thus, the measures of skin conductance activity showed the strongest changes over time, including habituation during the first presentation session and sensitization at the end of the second presentation session, whereas the facial electromyographic activity habituated only for the neutral stimuli and the heart rate did not habituate at all. Finally, we showed that the measure of personality trait anxiety influenced the orienting reaction to affective sounds, but not the adaptation processes related to the repeated presentation of these sounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Skeletal muscular counterpulsation (MCP) has been used as a new noninvasive technique for treatment of low cardiac output. The MCP method is based on ECG-triggered skeletal muscle stimulation. The purpose of the present study was to evaluate acute hemodynamic changes induced by MCP in the experimental animal. METHODS: Eight anaesthetized pigs (43+/-4 kg) were studied at rest and after IV â-blockade (10 mg propranolol) before and after MCP. Muscular counterpulsation was performed on both thighs using trains (75 ms duration) of multiple biphasic electrical impulses with a width of 1 ms and a frequency of 200 Hz at low (10 V) and high (30 V) amplitude. ECG-triggering was used to synchronize stimulation to a given time point. LV pressure-volume relations were determined using the conductance catheter. After baseline measurements, MCP was carried out for 10 minutes at low and high stimulation amplitude. The optimal time point for MCP was determined from LV pressure-volume loops using different stimulation time points during systole and diastole. Best results were observed during end-systole and, therefore, this time point was used for stimulation. RESULTS: Under control conditions, MCP was associated with a significant decrease in pulmonary vascular resistance (-18%), a decrease in systemic vascular resistance (-11%) and stroke work index (-4%), whereas cardiac index (+2%) and ejection fraction (+6%) increased slightly. Pressure-volume loops showed a leftward shift with a decrease in end-systolic volume. After â-blockade, cardiac function decreased (HR, MAP, EF, dP/dt max), but it improved with skeletal muscle stimulation (HR +10% and CI +17%, EF +5%). There was a significant decrease in pulmonary (-19%) and systemic vascular resistance (-29%). CONCLUSIONS: In the animal model, ECG-triggered skeletal muscular counterpulsation is associated with a significant improvement in cardiac function at baseline and after IV â-blockade. Thus, MCP represents a new, non-invasive technique which improves cardiac function by diastolic compression of the peripheral arteries and veins, with a decrease in systemic vascular resistance and increase in cardiac output.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common life-shortening autosomal recessive disorder in Caucasians, and is associated with at least one mutation on each CF transmembrane conductance regulator (CFTR) allele. Some patients, however, with only one identifiable point mutation carry on the other allele, a large deletion that is not detected by conventional screening methods. The overall frequency of large deletions in patients with CF is estimated to be 1-3%. Using the CFTR Multiplex Ligation dependent Probe Amplification Kit (MRC-Holland, Amsterdam, Netherlands) that allows the exact detection of copy numbers from all 27 exons in the CFTR gene, we screened 50 patients with only one identified mutation for large deletions in the CFTR gene. Each detected deletion was confirmed using our real-time polymerase chain reaction (PCR) assay and deletion-specific PCR reactions using junction fragment primers. We detected large deletions in eight patients (16%). These eight CF alleles belong to four different deletion types (CFTRindel2, CFTRdele14b-17b, CFTRdele17a-17b and CFTRdele 2-9) whereof the last is novel. Comparing detailed clinical data of all these patients with CF and the molecular genetic findings, we were able to elaborate criteria for deletion screenings and possible genotype-phenotype associations. In conclusion, we agree with other authors that deletion screenings should be implemented in routine genetic diagnostics of CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been suggested that the shape of the normalized time-varying elastance curve [E(n)(t(n))] is conserved in different cardiac pathologies. We hypothesize, however, that the E(n)(t(n)) differs quantitatively after myocardial infarction (MI). Sprague-Dawley rats (n = 9) were anesthetized, and the left anterior descending coronary artery was ligated to provoke the MI. A sham-operated control group (CTRL) (n = 10) was treated without the MI. Two months later, a conductance catheter was inserted into the left ventricle (LV). The LV pressure and volume were measured and the E(n)(t(n)) derived. Slopes of E(n)(t(n)) during the preejection period (alpha(PEP)), ejection period (alpha(EP)), and their ratio (beta = alpha(EP)/alpha(PEP)) were calculated, together with the characteristic decay time during isovolumic relaxation (tau) and the normalized elastance at end diastole (E(min)(n)). MI provoked significant LV chamber dilatation, thus a loss in cardiac output (-33%), ejection fraction (-40%), and stroke volume (-30%) (P < 0.05). Also, it caused significant calcium increase (17-fold), fibrosis (2-fold), and LV hypertrophy. End-systolic elastance dropped from 0.66 +/- 0.31 mmHg/microl (CTRL) to 0.34 +/- 0.11 mmHg/microl (MI) (P < 0.05). Normalized elastance was significantly reduced in the MI group during the preejection, ejection, and diastolic periods (P < 0.05). The slope of E(n)(t(n)) during the alpha(PEP) and beta were significantly altered after MI (P < 0.05). Furthermore, tau and end-diastolic E(min)(n) were both significantly augmented in the MI group. We conclude that the E(n)(t(n)) differs quantitatively in all phases of the heart cycle, between normal and hearts post-MI. This should be considered when utilizing the single-beat concept.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Knowledge of how CFTR mutations other than F508del translate into the basic defect in cystic fibrosis (CF) is scarce due to the low incidence of homozygous index cases. METHODS: 17 individuals who are homozygous for deletions, missense, stop or splice site mutations in the CFTR gene were investigated for clinical symptoms of CF and assessed in CFTR function by sweat test, nasal potential difference and intestinal current measurement. RESULTS: CFTR activity in sweat gland, upper airways and distal intestine was normal for homozygous carriers of G314E or L997F and in the range of F508del homozygotes for homozygous carriers of E92K, W1098L, R553X, R1162X, CFTRdele2(ins186) or CFTRdele2,3(21 kb). Homozygotes for M1101K, 1898+3 A-G or 3849+10 kb C-T were not consistent CF or non-CF in the three bioassays. 14 individuals exhibited some chloride conductance in the airways and/or in the intestine which was identified by the differential response to cAMP and DIDS as being caused by CFTR or at least two other chloride conductances. DISCUSSION: CFTR mutations may lead to unusual electrophysiological or clinical manifestations. In vivo and ex vivo functional assessment of CFTR function and in-depth clinical examination of the index cases are indicated to classify yet uncharacterised CFTR mutations as either disease-causing lesions, risk factors, modifiers or neutral variants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene is one of the most important materials. In this research, the structures and properties of graphene nano disks (GND) with a concentric shape were investigated by Density Functional Theory (DFT) calculations, in which the most effective DFT methods - B3lyp and Pw91pw91 were employed. It was found that there are two types of edges - Zigzag and Armchair in concentric graphene nano disks (GND). The bond length between armchair-edge carbons is much shorter than that between zigzag-edge carbons. For C24 GND that consists of 24 carbon atoms, only armchair edge with 12 atoms is formed. For a GND larger than the C24 GND, both armchair and zigzag edges co-exist. Furthermore, when the number of carbon atoms in armchair-edge are always 12, the number of zigzag-edge atoms increases with increasing the size of a GND. In addition, the stability of a GND is enhanced with increasing its size, because the ratio of edge-atoms to non-edge-atoms decreases. The size effect of a graphene nano disk on its HOMO-LUMO energy gap was evaluated. C6 and C24 GNDs possess HOMO-LUMO gaps of 1.7 and 2.1eV, respectively, indicating that they are semi-conductors. In contrast, C54 and C96 GNDs are organic metals, because their HOMO-LUMO gaps are as low as 0.3 eV. The effect of doping foreign atoms to the edges of GNDs on their structures, stabilities, and HOMO-LUMO energy gaps were also examined. When foreign atoms are attached to the edge of a GND, the original unsaturated carbon atoms become saturated. As a result, both of the C-C bonds lengths and the stability of a GND increase. Furthermore, the doping effect on the HOMO-LUMO energy gap is dependent on the type of doped atoms. The doping H, F, or OH into the edge of a GND increases its HOMO-LUMO energy gap. In contrast, a Li-doped GND has a lower HOMO-LUMO energy gap than that without doping. Therefore, Li-doping can increase the electrical conductance of a GND, whereas H, F, or OH-doping decreases its conductance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this project was to investigate the influence of a large inland lake on adjacent coastal freshwater peatlands. The specific aim was to determine the source of groundwater for three differently formed peatlands located on the southern shore of Lake Superior. The groundwater study was conducted at Bete Grise, a peatland complex in a dune-swale system; Pequaming, a peatland developed in the swale of a tombolo; and Lightfoot Bay, a peatland developed in a barrier beach wetland complex. To determine the source of groundwater in the peatlands, transects of six groundwater monitoring wells were established at each study site, covering distinctly different vegetation zones. At Pequaming and Lightfoot Bay the transects monitored two vegetation zones: transition zone from upland and open fen. At Bete Grise, the transects monitored dunes and swales. Additionally, at all three sites, upland groundwater was monitored using three wells that were installed into the adjacent upland forest. Biweekly measurements of well water pH and specific conductance were carried out from May to October of 2010. At each site, vegetation cover, peat depths and surface elevations were determined and compared to Lake Superior water levels. From June 14 – 17, July 20 – 21 and September 10 – 12, stable isotopes of oxygen (18O/16O) ratios were measured in all the wells and for Lake Superior water. A mixing model was used to estimate the percentage of lake water influencing each site based on the oxygen isotope ratios. During the sampling period, groundwater at all three sites was supported primarily by upland groundwater. Pequaming was approximately 80 % upland groundwater supported and up to 20 % Lake water supported in the uppermost 1 m layer of peat column of the transition zone and open fen. Bete Grise and Lightfoot Bay were 100 % upland groundwater supported throughout the season. The height of Lake Superior was near typical levels in 2010. In years when the lake level is higher, Lake water could intrude into the adjacent peatlands. However, under typical hydrologic conditions, these coastal peatlands are primarily supported by upland groundwater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The craze for faster and smaller electronic devices has never gone down and this has always kept researchers on their toes. Following Moore’s law, which states that the number of transistors in a single chip will double in every 18 months, today “30 million transistors can fit into the head of a 1.5 mm diameter pin”. But this miniaturization cannot continue indefinitely due to the ‘quantum leakage’ limit in the thickness of the insulating layer between the gate electrode and the current carrying channel. To bypass this limitation, scientists came up with the idea of using vastly available organic molecules as components in an electronic device. One of the primary challenges in this field was the ability to perform conductance measurements across single molecular junctions. Once that was achieved the focus shifted to a deeper understanding of the underlying physics behind the electron transport across these molecular scale devices. Our initial theoretical approach is based on the conventional Non-Equilibrium Green Function(NEGF) formulation, but the self-energy of the leads is modified to include a weighting factor that ensures negligible current in the absence of a molecular pathway as observed in a Mechanically Controlled Break Junction (MCBJ) experiment. The formulation is then made parameter free by a more careful estimation of the self-energy of the leads. The calculated conductance turns out to be atleast an order more than the experimental values which is probably due to a strong chemical bond at the metal-molecule junction unlike in the experiments. The focus is then shifted to a comparative study of charge transport in molecular wires of different lengths within the same formalism. The molecular wires, composed of a series of organic molecules, are sanwiched between two gold electrodes to make a two terminal device. The length of the wire is increased by sequentially increasing the number of molecules in the wire from 1 to 3. In the low bias regime all the molecular devices are found to exhibit Ohmic behavior. However, the magnitude of conductance decreases exponentially with increase in length of the wire. In the next study, the relative contribution of the ‘in-phase’ and the ‘out-of-phase’ components of the total electronic current under the influence of an external bias is estimated for the wires of three different lengths. In the low bias regime, the ‘out-of-phase’ contribution to the total current is minimal and the ‘in-phase’ elastic tunneling of the electrons is responsible for the net electronic current. This is true irrespective of the length of the molecular spacer. In this regime, the current-voltage characteristics follow Ohm’s law and the conductance of the wires is found to decrease exponentially with increase in length which is in agreement with experimental results. However, after a certain ‘off-set’ voltage, the current increases non-linearly with bias and the ‘out-of-phase’ tunneling of electrons reduces the net current substantially. Subsequently, the interaction of conduction electrons with the vibrational modes as a function of external bias in the three different oligomers is studied since they are one of the main sources of phase-breaking scattering. The number of vibrational modes that couple strongly with the frontier molecular orbitals are found to increase with length of the spacer and the external field. This is consistent with the existence of lowest ‘off-set’ voltage for the longest wire under study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Groundwater pumping from aquifers in hydraulic connection with nearby streams is known to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes--St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin is shown to be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time and streamflow depletion limits as well as streambed conductance. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.