934 resultados para SPECIES DISTRIBUTION MODELS
Resumo:
Inflorescence and floral development of two tropical legume trees, Dahlstedtia pinnata and Dahlstedlia pentaphylla, occurring in the Atlantic Forest of south-eastern and southern Brazil, were investigated and compared with other papilionoids. Few studies have been made of floral development in tribe Millettieae, and this paper is intended to fill that gap in our knowledge. Dahlstedtia species have an unusual inflorescence type among legumes, the pseudoraceme, which comprises axillary units of three or more flowers, each with a subtending bract. Each flower exhibits a pair of opposite bractcoles. The order of flower initiation is acropetal; inception of the floral organs is as follows: sepals (5), petals (5), carpel (1) plus outer stamens (5) and finally inner stamens (5). Organ initiation in sepal, petal and inner stamen whorls is unidirectional; the carpel cleft is adaxial. The vexillum originates from a tubular-shaped primordium in mid-development and is larger than other petals at maturity, covering the keels. The filament tube develops later after initiation of inner-stamen primordia. Floral development in Dahlstedtia is almost always similar to other papilionoids, especially species of Phaseoleae and Sophoreae. But one important difference is the precocious ovule initiation (open carpel with ovules) in Dahlstedtia, the third citation of this phenomenon for papilionoids. No suppression, organ loss or anomalies occur in the order of primordia initiation or structure. Infra-generic differences in the first stages of ontogeny are rare; however, different species of Dahlstedtia are distinguished by the differing distribution pattern of secretory cavities in the flower. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
LEITE, V. G., F. S. MARQUIAFAVEL, D. P. MORAES, AND S. P. TEIXEIRA (Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo (USP), Av. do Cafe, s/n, 14040-903 Ribeirao Preto, SP, Brazil). Fruit anatomy of Neotropical species of Indigofera (Leguminosae, Papilionoideae) with functional and taxonomic implications. J. Torrey Bot. Soc. 136: 203-211. 2009-This work reports on the fruit surface and anatomy of seven Neotropical species of Indigofera (I. campestris Bong. ex Benth., I. hirsuta L., I. lespedeziodes Kunth, I. microcarpa Desv., I. spicata Forssk., I. suffruticosa Mill., and I. truxillensis Kunth) to help species diagnosis and clarify the fruit type classification. Flowers and fruits at several stages of development were removed from living material, fixed, and examined with scanning electron (surface analyses) and light microscopies (histological analyses). Species showed differences in relation to the number of exocarp layers, secretory trichome morphology and distribution, presence of stomata, phenolic idioblast size and distribution in mesocarp, the number and arrangement of endocarp fibers, and the presence of it separation tissue. It is noteworthy that no separation tissue was observed in L microcarpa and I. suffruticosa, although they have dehiscent fruits, which indicates it delayed dehiscence. The present work confirms that fruit anatomical characters can be utilized as it tool for fruit type classification, especially in Indigofera, the third largest genus of Leguminosae.
Resumo:
Cytoplasmic incompatibility is known to occur between strains of both Drosophila simulans and D. melanogaster. Incompatibility is associated with the infection of Drosophila with microorganismal endosymbionts. This paper reports survey work conducted on strains of D. simulans and D. melanogaster from diverse geographical locations finding that infected populations are relatively rare and scattered in their distribution. The distribution of infected populations of D. simulans appears to be at odds with deterministic models predicting the rapid spread of the infection through uninfected populations. Examination of isofemale lines from four localities in California where populations appear to be polymorphic for the infection failed to find evidence for consistent assortative mating preferences between infected and uninfected populations that may explain the basis for the observed polymorphism.
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.