951 resultados para SPECIATION
Resumo:
The “shape” of a female mating preference is the relationship between a male trait and the probability of acceptance as a mating partner. The shape of preferences is important in many models of sexual selection, mate recognition, communication, and speciation, yet it has rarely been measured precisely. Here I examine preference shape for male calling song in a bushcricket (katydid). Preferences change dramatically between races of a species, from strongly directional to broadly stabilizing (but with a net directional effect). Preference shape generally matches the distribution of the male trait. This is compatible with a coevolutionary model of signal-preference evolution, although it does not rule out an alternative model, sensory exploitation. Preference shapes are shown to be genetic in origin.
Resumo:
The evolution of O2-producing cyanobacteria that use water as terminal reductant transformed Earth's atmosphere to one suitable for the evolution of aerobic metabolism and complex life. The innovation of water oxidation freed photosynthesis to invade new environments and visibly changed the face of the Earth. We offer a new hypothesis for how this process evolved, which identifies two critical roles for carbon dioxide in the Archean period. First, we present a thermodynamic analysis showing that bicarbonate (formed by dissolution of CO2) is a more efficient alternative substrate than water for O2 production by oxygenic phototrophs. This analysis clarifies the origin of the long debated “bicarbonate effect” on photosynthetic O2 production. We propose that bicarbonate was the thermodynamically preferred reductant before water in the evolution of oxygenic photosynthesis. Second, we have examined the speciation of manganese(II) and bicarbonate in water, and find that they form Mn-bicarbonate clusters as the major species under conditions that model the chemistry of the Archean sea. These clusters have been found to be highly efficient precursors for the assembly of the tetramanganese-oxide core of the water-oxidizing enzyme during biogenesis. We show that these clusters can be oxidized at electrochemical potentials that are accessible to anoxygenic phototrophs and thus the most likely building blocks for assembly of the first O2 evolving photoreaction center, most likely originating from green nonsulfur bacteria before the evolution of cyanobacteria.
Resumo:
The search for a common cause of species richness gradients has spawned more than 100 explanatory hypotheses in just the past two decades. Despite recent conceptual advances, further refinement of the most plausible models has been stifled by the difficulty of compiling high-resolution databases at continental scales. We used a database of the geographic ranges of 2,869 species of birds breeding in South America (nearly a third of the world's living avian species) to explore the influence of climate, quadrat area, ecosystem diversity, and topography on species richness gradients at 10 spatial scales (quadrat area, ≈12,300 to ≈1,225,000 km2). Topography, precipitation, topography × latitude, ecosystem diversity, and cloud cover emerged as the most important predictors of regional variability of species richness in regression models incorporating 16 independent variables, although ranking of variables depended on spatial scale. Direct measures of ambient energy such as mean and maximum temperature were of ancillary importance. Species richness values for 1° × 1° latitude-longitude quadrats in the Andes (peaking at 845 species) were ≈30–250% greater than those recorded at equivalent latitudes in the central Amazon basin. These findings reflect the extraordinary abundance of species associated with humid montane regions at equatorial latitudes and the importance of orography in avian speciation. In a broader context, our data reinforce the hypothesis that terrestrial species richness from the equator to the poles is ultimately governed by a synergism between climate and coarse-scale topographic heterogeneity.
Resumo:
The biotic crisis overtaking our planet is likely to precipitate a major extinction of species. That much is well known. Not so well known but probably more significant in the long term is that the crisis will surely disrupt and deplete certain basic processes of evolution, with consequences likely to persist for millions of years. Distinctive features of future evolution could include a homogenization of biotas, a proliferation of opportunistic species, a pest-and-weed ecology, an outburst of speciation among taxa that prosper in human-dominated ecosystems, a decline of biodisparity, an end to the speciation of large vertebrates, the depletion of “evolutionary powerhouses” in the tropics, and unpredictable emergent novelties. Despite this likelihood, we have only a rudimentary understanding of how we are altering the evolutionary future. As a result of our ignorance, conservation policies fail to reflect long-term evolutionary aspects of biodiversity loss.
Resumo:
Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.
Resumo:
Although panel discussants disagreed whether the biodiversity crisis constitutes a mass extinction event, all agreed that current extinction rates are 50–500 times background and are increasing and that the consequences for the future evolution of life are serious. In response to the on-going rapid decline of biomes and homogenization of biotas, the panelists predicted changes in species geographic ranges, genetic risks of extinction, genetic assimilation, natural selection, mutation rates, the shortening of food chains, the increase in nutrient-enriched niches permitting the ascendancy of microbes, and the differential survival of ecological generalists. Rates of evolutionary processes will change in different groups, and speciation in the larger vertebrates is essentially over. Action taken over the next few decades will determine how impoverished the biosphere will be in 1,000 years when many species will suffer reduced evolvability and require interventionist genetic and ecological management. Whether the biota will continue to provide the dependable ecological services humans take for granted is less clear. The discussants offered recommendations, including two of paramount importance (concerning human populations and education), seven identifying specific scientific activities to better equip us for stewardship of the processes of evolution, and one suggesting that such stewardship is now our responsibility. The ultimate test of evolutionary biology as a science is not whether it solves the riddles of the past but rather whether it enables us to manage the future of the biosphere. Our inability to make clearer predictions about the future of evolution has serious consequences for both biodiversity and humanity.
Resumo:
The poison frogs (family Dendrobatidae) are terrestrial anuran amphibians displaying a wide range of coloration and toxicity. These frogs generally have been considered to be aposematic, but relatively little research has been carried out to test the predictions of this hypothesis. Here we use a comparative approach to test one prediction of the hypothesis of aposematism: that coloration will evolve in tandem with toxicity. Recently, we developed a phylogenetic hypothesis of the evolutionary relationships among representative species of poison frogs, using sequences from three regions of mitochondrial DNA. In our analysis, we use that DNA-based phylogeny and comparative analysis of independent contrasts to investigate the correlation between coloration and toxicity in the poison frog family (Dendrobatidae). Information on the toxicity of different species was obtained from the literature. Two different measures of the brightness and extent of coloration were used. (i) Twenty-four human observers were asked to rank different photos of each different species in the analysis in terms of contrast to a leaf-littered background. (ii) Color photos of each species were scanned into a computer and a computer program was used to obtain a measure of the contrast of the colors of each species relative to a leaf-littered background. Comparative analyses of the results were carried out with two different models of character evolution: gradual change, with branch lengths proportional to the amount of genetic change, and punctuational change, with all change being associated with speciation events. Comparative analysis using either method or model indicated a significant correlation between the evolution of toxicity and coloration across this family. These results are consistent with the hypothesis that coloration in this group is aposematic.
Resumo:
The genomic era revolutionized evolutionary biology. The enigma of genotypic-phenotypic diversity and biodiversity evolution of genes, genomes, phenomes, and biomes, reviewed here, was central in the research program of the Institute of Evolution, University of Haifa, since 1975. We explored the following questions. (i) How much of the genomic and phenomic diversity in nature is adaptive and processed by natural selection? (ii) What is the origin and evolution of adaptation and speciation processes under spatiotemporal variables and stressful macrogeographic and microgeographic environments? We advanced ecological genetics into ecological genomics and analyzed globally ecological, demographic, and life history variables in 1,200 diverse species across life, thousands of populations, and tens of thousands of individuals tested mostly for allozyme and partly for DNA diversity. Likewise, we tested thermal, chemical, climatic, and biotic stresses in several model organisms. Recently, we introduced genetic maps and quantitative trait loci to elucidate the genetic basis of adaptation and speciation. The genome–phenome holistic model was deciphered by the global regressive, progressive, and convergent evolution of subterranean mammals. Our results indicate abundant genotypic and phenotypic diversity in nature. The organization and evolution of molecular and organismal diversity in nature at global, regional, and local scales are nonrandom and structured; display regularities across life; and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection, including diversifying, balancing, cyclical, and purifying selective regimes, interacting with, but ultimately overriding, the effects of mutation, migration, and stochasticity.
Resumo:
The Ensatina eschscholtzii complex of plethodontid salamanders, a well-known “ring species,” is thought to illustrate stages in the speciation process. Early research, based on morphology and coloration, has been extended by the incorporation of studies of protein variation and mitochondrial DNA sequences. The new data show that the complex includes a number of geographically and genetically distinct components that are at or near the species level. The complex is old and apparently has undergone instances of range contraction, isolation, differentiation, and then expansion and secondary contact. While the hypothesis that speciation is retarded by gene flow around the ring is not supported by molecular data, the general biogeographical hypothesis is supported. There is evidence of a north to south range expansion along two axes, with secondary contact and completion of the ring in southern California. Current research targets regions once thought to show primary intergradation, but which molecular markers reveal to be zones of secondary contact. Here emphasis is on the subspecies E. e. xanthoptica, which is involved in four distinct secondary contacts in central California. There is evidence of renewed genetic interactions upon recontact, with greater genetic differentiation within xanthoptica than between it and some of the interacting populations. The complex presents a full array of intermediate conditions between well-marked species and geographically variable populations. Geographically differentiated segments represent a diversity of depths of time of isolation and admixture, reflecting the complicated geomorphological history of California. Ensatina illustrates the continuing difficulty in making taxonomic assignments in complexes studied during species formation.
Resumo:
External (environmental) factors affecting the speciation of birds are better known than the internal (genetic) factors. The opposite is true for several groups of invertebrates, Drosophila being the outstanding example. Ideas about the genetics of speciation in general trace back to Dobzhansky who worked with Drosophila. These ideas are an insufficient guide for reconstructing speciation in birds for two main reasons. First, speciation in birds proceeds with the evolution of behavioral barriers to interbreeding; postmating isolation usually evolves much later, perhaps after gene exchange has all but ceased. As a consequence of the slow evolution of postmating isolating factors the scope for reinforcement of premating isolation is small, whereas the opportunity for introgressive hybridization to influence the evolution of diverging species is large. Second, premating isolation may arise from nongenetic, cultural causes; isolation may be affected partly by song, a trait that is culturally inherited through an imprinting-like process in many, but not all, groups of birds. Thus the genetic basis to the origin of bird species is to be sought in the inheritance of adult traits that are subject to natural and sexual selection. Some of the factors involved in premating isolation (plumage, morphology, and behavior) are under single-gene control, most are under polygenic control. The genetic basis of the origin of postmating isolating factors affecting the early development of embryos (viability) and reproductive physiology (sterility) is almost completely unknown. Bird speciation is facilitated by small population size, involves few genetic changes, and occurs relatively rapidly.
Resumo:
There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms.
Resumo:
The genetic basis of sexual isolation that contributes to speciation is one of the unsolved questions in evolutionary biology. Drosophila ananassae and Drosophila pallidosa are closely related, and postmating isolation has not developed between them. However, females of both species discriminate their mating partners, and this discrimination contributes to strong sexual isolation between them. By using surgical treatments, we demonstrate that male courtship songs play a dominant role in female mate discrimination. The absence of the song of D. pallidosa dramatically increased interspecies mating with D. ananassae females but reduced intraspecies mating with D. pallidosa females. Furthermore, genetic analysis and chromosomal introgression by repeated backcrosses to D. pallidosa males identified possible loci that control female discrimination in each species. These loci were mapped on distinct positions near the Delta locus on the middle of the left arm of the second chromosome. Because the mate discrimination we studied is well developed and is the only known mechanism that prevents gene flow between them, these loci may have played crucial roles in the evolution of reproductive isolation, and therefore, in the speciation process between these two species.
Resumo:
Se can be accumulated by plants and volatilized to dimethylselenide, providing an attractive technology for Se phytoremediation. To determine the rate-limiting steps in Se volatilization from selenate and selenite, time- and concentration-dependent kinetics of Se accumulation and volatilization were studied in Indian mustard (Brassica juncea). Time-dependent kinetic studies showed that selenate was taken up 2-fold faster than selenite. Selenate was rapidly translocated to the shoot, away from the root, the site of volatilization, whereas only approximately 10% of the selenite was translocated. For both selenate- and selenite-supplied plants, Se accumulation and volatilization increased linearly with external Se concentration up to 20 μm; volatilization rates were also linearly correlated with root Se concentrations. Se-volatilization rates were 2- to 3-fold higher from plants supplied with selenite compared with selenate. Se speciation by x-ray absorption spectroscopy revealed that selenite-supplied plants accumulated organic Se, most likely selenomethionine, whereas selenate-supplied plants accumulated selenate. Our data suggest that Se volatilization from selenate is limited by the rate of selenate reduction, as well as by the availability of Se in roots, as influenced by uptake and translocation. Se volatilization from selenite may be limited by selenite uptake and by the conversion of selenomethionine to dimethylselenide.
Resumo:
Rapid divergence in postmating-prezygotic characters suggests that selection may be responsible for generating reproductive barriers between closely related species. Theoretical models indicate that this rapid divergence could be generated by a series of male adaptations and female counteradaptations by means of sexual selection or conflict, but empirical tests of particular mechanisms are generally lacking. Moreover, although a male–female genotypic interaction in mediating sperm competition attests to an active role of females, molecular or morphological evidence of the female's participation in the coevolutionary process is critically needed. Here we show that postmating-prezygotic variation among populations of cactophilic desert Drosophila reflects divergent coevolutionary trajectories between the sexes. We explicitly test the female's role in intersexual interactions by quantifying differences in a specific postmating-prezygotic reproductive character, the insemination reaction mass, in two species, Drosophila mojavensis and Drosophila arizonae. A series of interpopulation crosses confirmed that population divergence was propelled by male–female interactions, a prerequisite if the selective forces derive from sexual conflicts. An association between the reaction mass and remating and oviposition behavior argues that divergence has been propelled by sexually antagonistic coevolution, and potentially has important implications for speciation.
Resumo:
Numerous island-inhabiting species of predominantly herbaceous angiosperm genera are woody shrubs or trees. Such "insular woodiness" is strongly manifested in the genus Echium, in which the continental species of circummediterranean distribution are herbaceous, whereas endemic species of islands along the Atlantic coast of north Africa are woody perennial shrubs. The history of 37 Echium species was traced with 70 kb of noncoding DNA determined from both chloroplast and nuclear genomes. In all, 239 polymorphic positions with 137 informative sites, in addition to 27 informative indels, were found. Island-dwelling Echium species are shown to descend from herbaceous continental ancestors via a single island colonization event that occurred < 20 million years ago. Founding colonization appears to have taken place on the Canary Islands, from which the Madeira and Cape Verde archipelagos were invaded. Colonization of island habitats correlates with a recent origin of perennial woodiness from herbaceous habit and was furthermore accompanied by intense speciation, which brought forth remarkable diversity of forms among contemporary island endemics. We argue that the origin of insular woodiness involved response to counter-selection of inbreeding depression in founding island colonies.