970 resultados para SPATIAL LIGHT MODULATORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time-series analysis of satellite images utilizing pixel spectral information for image clustering and region based segmentation for extracting water covered regions. MODIS satellite images are analyzed at two stages: before flood and during flood. Multi-temporal MODIS images are processed in two steps. In the first step, clustering algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are used to distinguish the water regions from the non-water based on spectral information. These algorithms are chosen since they are quite efficient in solving multi-modal optimization problems. These classified images are then segmented using spatial features of the water region to extract the river. From the results obtained, we evaluate the performance of the methods and conclude that incorporating region based image segmentation along with clustering algorithms provides accurate and reliable approach for the extraction of water covered region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose modulation diversity techniques for Spatial Modulation (SM) system using Complex Interleaved Orthogonal Design (CIOD). Specifically, we show that the standard SM scheme can achieve a transmit diversity order of two by using the CIOD meant for two transmit antenna system without incurring any additional system complexity or bandwidth requirement. Furthermore, we propose a low-complexity maximum likelihood detector for our CIOD based SM schemes by exploiting the structure of the CIOD. We show with our simulation results that the proposed schemes offer transmit diversity order of two and give a better symbol error rate performance than the conventional SM scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be similar to 1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4795779]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel transmit antenna selection techniques are conceived for Spatial Modulation (SM) systems and their symbol error rate (SER) performance is investigated. Specifically, low-complexity Euclidean Distance optimized Antenna Selection (EDAS) and Capacity Optimized Antenna Selection (COAS) are studied. It is observed that the COAS scheme gives a better SER performance than the EDAS scheme. We show that the proposed antenna selection based SM systems are capable of attaining a significant gain in signal-to-noise ratio (SNR) compared to conventional SM systems, and also outperform the conventional MIMO systems employing antenna selection at both low and medium SNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, high quality tin oxide (SnO2) nanowires have been synthesized at a low substrate temperature of 450 degrees C via vapor-liquid-solid mechanism using an electron beam evaporation technique. The grown nanowires have shown length of 2-4 mu m and diameter of 20-60 nm. High resolution transmission electron microscope studies on the grown nanowires have shown the single crystalline nature of the SnO2 nanowires. We investigated the effect of growth temperature and oxygen partial pressure on SnO2 nanowires growth. Variation of substrate temperature at a constant oxygen partial pressure of 4 x 10(-4) mbar suggested that a temperature equal to or greater than 450 degrees C was the best condition for phase pure SnO2 nanowires growth. The SnO2 nanowires grown on a SiO2 substrate were subjected to UV photo detection. The responsivity and quantum efficiency of SnO2 NWs photo detector (at 10V applied bias) was 12 A/W and 45, respectively, for 12 mu W/cm(2) UV lamp (330 nm) intensity on the photo detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunability of electron recombination time and light to electricity conversion efficiency to superior values in semiconductor sensitized solar cells via optimized design of nanocrystal light sensitizer shape is discussed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-doped anatase nanosized titania photocatalysts were successfully synthesized using a sal gel process. Different amounts of the dopants (0.2, 0.4, 0.6, 0.8 and 1.0%) of the metals (Ag, Ni, Co and Pd) were utilized. The UV-Vis spectra (solid state diffuse reflectance spectra) of the doped nanoparticles exhibited a red shift in the absorption edge as a result of metal doping. The metal-doped nanoparticles were investigated for their photocatalytic activity under visible-light irradiation using Rhodamine B (Rh B) as a control pollutant. The results obtained indicate that the metal-doped titania had the highest activity at 0.4% metal loading. The kinetic models revealed that the photodegradation of Rh B followed a pseudo first order reaction. From ion chromatography (IC) analysis the degradation by-products Rhodamine B fragments were found to be acetate, chloride, nitrite, carbonate and nitrate ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily rainfall datasets of 10 years (1998-2007) of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) version 6 and India Meteorological Department (IMD) gridded rain gauge have been compared over the Indian landmass, both in large and small spatial scales. On the larger spatial scale, the pattern correlation between the two datasets on daily scales during individual years of the study period is ranging from 0.4 to 0.7. The correlation improved significantly (similar to 0.9) when the study was confined to specific wet and dry spells each of about 5-8 days. Wavelet analysis of intraseasonal oscillations (ISO) of the southwest monsoon rainfall show the percentage contribution of the major two modes (30-50 days and 10-20 days), to be ranging respectively between similar to 30-40% and 5-10% for the various years. Analysis of inter-annual variability shows the satellite data to be underestimating seasonal rainfall by similar to 110 mm during southwest monsoon and overestimating by similar to 150 mm during northeast monsoon season. At high spatio-temporal scales, viz., 1 degrees x1 degrees grid, TMPA data do not correspond to ground truth. We have proposed here a new analysis procedure to assess the minimum spatial scale at which the two datasets are compatible with each other. This has been done by studying the contribution to total seasonal rainfall from different rainfall rate windows (at 1 mm intervals) on different spatial scales (at daily time scale). The compatibility spatial scale is seen to be beyond 5 degrees x5 degrees average spatial scale over the Indian landmass. This will help to decide the usability of TMPA products, if averaged at appropriate spatial scales, for specific process studies, e.g., cloud scale, meso scale or synoptic scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

``The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre + post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups.'' (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous fungus-like ZnO nanostructures have been synthesized by simple thermal annealing of the hydrothermally synthesized sheet-like ZnS(en)(0.5) complex precursor in air at 600 degrees C. Structural and morphological changes occurring during ZnS(en)(0.5) -> ZnS -> ZnO transformations have been observed closely by annealing the as-synthesized precursor at 100-600 degrees C. Wurtzite ZnS nanosheets and ZnS-ZnO composites are obtained at temperatures of 400 degrees C and 500 degrees C, respectively. Thermal decomposition and oxidation of the ZnS(en) 0.5 nanosheets have been confirmed by differential scanning calorimetry and thermo-gravimetric analysis. The visible light driven photocatalytic degradation of methylene blue dye has been demonstrated in the synthesized samples. ZnS-ZnO composite shows the highest dye degradation efficiency of 74% due to the formation of surface complex as well as higher visible light absorption as a result of band-gap narrowing effect. The porous ZnO nanostructures show efficient visible photoluminescence (PL) emission with a colour coordinate of (0.29, 0.35), which is close to that of white light (0.33, 0.33). The efficient visible PL emission as well as visible light driven photocatalytic activity of the materials synthesized in the present work might be very attractive for their applications in future optoelectronic devices, including in white light emitting devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly pollution-free solutions of the Helmholtz equation for k-values corresponding to visible light are demonstrated and verified through experimentally measured forward scattered intensity from an optical fiber. Numerically accurate solutions are, in particular, obtained through a novel reformulation of the H-1 optimal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a globally smooth polynomial reproducing framework, the compact and smooth test functions are so designed that their normal derivatives are zero everywhere on the local boundaries of their compact supports. This circumvents the need for a priori knowledge of the true solution on the support boundary and relieves the weak form of any jump boundary terms. For numerical demonstration of the above formulation, we used a multimode optical fiber in an index matching liquid as the object. The scattered intensity and its normal derivative are computed from the scattered field obtained by solving the Helmholtz equation, using the new formulation and the conventional finite element method. By comparing the results with the experimentally measured scattered intensity, the stability of the solution through the new formulation is demonstrated and its closeness to the experimental measurements verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal studies were carried out from 21 stations, comprising of three zones, of Cochin Estuary, to assess the organic matter quality and trophic status. The hydographical parameters showed significant seasonal variations and nutrients and chlorophylls were generally higher during the monsoon season. However, chemical contamination along with the seasonal limitations of light and nitrogen imposed restrictions on the primary production and as a result, mesotrophic conditions generally prevailed in the water column. The nutrient stoichometries and delta C-13 values of surficial sediments indicated significant allochthonous contribution of organic matter. Irrespective of the higher content of total organic matter, the labile organic matter was very low. Dominance of carbohydrates over lipids and proteins indicated the lower nutritive aspect of the organic matter, and their aged and refractory nature. This, along with higher amount of phytodetritus and the low algal contribution to the biopolymeric carbon corroborated the dominance of allochthonous organic matter and the heterotrophic nature. The spatial and seasonal variations of labile organic components could effectively substantiate the observed shift in the productivity pattern. An alternative ratio, lipids to tannins and lignins, was proposed to ascertain the relative contribution of allochthonous organic matter in the estuary. This study confirmed the efficiency of an integrated biogeochemical approach to establish zones with distinct benthic trophic status associated with different degrees of natural and anthropogenic input. Nevertheless, our results also suggest that the biochemical composition alone could lead to erroneous conclusions in the case of regions that receive enormous amounts of anthropogenic inputs.