942 resultados para SOMATOSENSORY-EVOKED-POTENTIALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blurring a pattern reversal stimulus increases the latency and decreases the amplitude of the visual evoked potential (VEP) P100 peak. Recording the visual evoked magnetic response (VEMR) is some subjects may therefore be difficult because their spectacles create excessive magnetic noise. Hence, the effect of varying degrees of blur (-5 to +5 D) on the VEMR was investigated in three subjects with 6/6 vision to determine whether refraction with non-magnetic frames and lenses was necessary before magnetic recording. Small (32') and larger (70') checks were studied since there is evidence that blurring small checks has a more significant effect on the VEP compared with large checks. The VEMR was recorded using a single channel dc-SQUID, second order gradiometer in an unshielded laboratory. The latency (ms) and amplitude (fT) of the most prominant positive peak within the first 130 ms (P100M) were measured. Blurring the 32' checks significantly increased latency aand reduced the amplitude of the P100M peak. The resulting response curves were parabolic with minimum latency and maximum amplitude recorded at 0 D. Blurring the 70' check had no significant effect on latency or amplitude. Hence, the magnetic P100M responds similarly to the electrical P100 in response to blur. It would be essential when recording the VEMR that vision is corrected with non-magnetic spectacles especially when small checks are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relations between spatial attention and motor intention were investigated by means of an EEG potential elicited by shifting attention to a location in space as well as by the selection of a hand for responding. High-density recordings traced this potential to a common frontoparietal network activated by attentional orienting and by response selection. Within this network, parietal and frontal cortex were activated sequentially, followed by an anterior-to-posterior migration of activity culminating in the lateral occipital cortex. Based on temporal and polarity information provided by EEG, we hypothesize that the frontoparietal activation, evoked by directional information, updates a task-defined preparatory state by deselecting or inhibiting the behavioral option competing with the cued response side or the cued direction of attention. These results from human EEG demonstrate a direct EEG manifestation of the frontoparietal attention network previously identified in functional imaging. EEG reveals the time course of activation within this network and elucidates the generation and function of associated directing-attention EEG potentials. The results emphasize transient activation and a decision-related function of the frontoparietal attention network, contrasting with the sustained preparatory activation that is commonly inferred from neuroimaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astrocytes release gliotransmitters, notably glutamate, that can affect neuronal and synaptic activity. In particular, astrocytic glutamate release results in the generation of NMDA receptor (NMDA-R)-mediated slow inward currents (SICs) in neurons. However, factors underlying the emergence of SICs and their physiological roles are essentially unknown. Here we show that, in acute slices of rat somatosensory thalamus, stimulation of lemniscal or cortical afferents results in a sustained increase of SICs in thalamocortical (TC) neurons that outlasts the duration of the stimulus by 1 h. This long-term enhancement of astrocytic glutamate release is induced by group I metabotropic glutamate receptors and is dependent on astrocytic intracellular calcium. Neuronal SICs are mediated by extrasynaptic NR2B subunit-containing NMDA-Rs and are capable of eliciting bursts. These are distinct from T-type Ca2+ channel-dependent bursts of action potentials and are synchronized in neighboring TC neurons. These findings describe a previously unrecognized form of excitatory, nonsynaptic plasticity in the CNS that feeds forward to generate local neuronal firing long after stimulus termination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schrödinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg–de-Vries and the nonlinear Schrödinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiments described in this thesis compared conventional methods of screening for neurotoxins with potential electrophysiological and pharmacological tests in an attempt to improve the sensitivity of detection of progressive distal neuropathy. Adult male albino mice were dosed orally with the neurotoxicant acylamide and subjected to a test of limb strength and co-ordination and a functional observational battery. These methods established a no observable effect level of 10 mg/kg. A dose of 200 mg/kg resulted in abnormalities of gait and reduced limb strength and/or co-ordination. Analysis of the in vitro 'jitter' of the latency of trains of action potentials evoked at a frequency of 30 Hz in the mouse phrenic nerve/hemidiaphragm preparation showed this technique to be unsuitable for detection of the early phases of acrylamide induced peripheral neuropathy (l00 mg/kg). The evoked and spontaneous twitch responses of the hemidiaphragm preparation following in vitro exposure to the organophosphorous anticholinesterase compound ecothiopate were altered by in vivo pre treatment with acrylamide. Acrylamide caused an increase in the time course of the potentiation of stimulated twitches and a decrease in the maximum potentiation. Spontaneous twitches were reduced in amplitude and frequency. These effects occurred at an acrylamide dose level insufficient to cause clinical signs of neuropathy. Investigations into the mechanisms underlying these observations yielded the following observations. Analysis of miniature endplate potentials at this dose level indicated prolongation of the life of acetylcholine in the synaptic cleft but the implied decrease in cholinesterase activity could not be demonstrated biochemically or histologically. The electrical excitability of the nerve terminal region of phrenic motor nerves was reduced following acrylamide although a possible compromise of antidromic action potential conduction could not be confirmed. There was no histopathological evidence of neuropathy at this dose level. Further exploration of this phenomenon is desirable in order to ascertain whether the effect is specific to acrylamide and/or ecothiopate and to elucidate the mechanisms behind these novel observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the pattern of activity of neurones within the basal ganglia are relevant in the pathophysiology and symptoms of Parkinson’s disease. The globus pallidus (GP) – subthalamic nucleus (STN) network has been proposed to form a pacemaker driving regenerative synchronous bursting activity. In order to test whether this activity can be sustained in vitro a 20o parasagittal slice of mouse midbrain was developed which preserved functional connectivity between the STN and GP. Mouse STN and GP cells were characterised electrophysiologically by the presence or absence of a voltage sag in response to hyperpolarising current steps indicative of Ih and the presence of rebound depolarisations. The presence of evoked and spontaneous post-synaptic GABA and glutamatergic currents indicated functional connectivity between the STN and GP. In control slices, STN cells fired action potentials at a regular rate, activity which was unaffected by bath application of the GABAA receptor antagonist picrotoxin (50 μM) or the glutamate receptor antagonist CNQX (10 μM). Paired extracellular recordings of STN cells showed uncorrelated firing. Oscillatory burst activity was induced pharmacologically using the glutamate receptor agonist, NMDA (20 μM), in combination with the potassium channel blocker apamin (50 -100 nM). The burst activity was unaffected by bath application of picrotoxin or CNQX while paired STN recordings showed uncorrelated activity indicating that the activity is not produced by the neuronal network. Thus, no regenerative activity is evident in this mouse brain preparation, either in control slices or when bursting is pharmacologically induced, suggesting the requirement of other afferent inputs that are not present in the slice. Using single-unit extracellular recording, dopamine (30 μM) produced an excitation of STN cells. This excitation was independent of synaptic transmission and was mimicked by both the Dl-like receptor agonist SKF38393 (10 μM) and the D2-like receptor agonist quinpirole (10 μM). However, the excitation was partially reduced by the D1-like antagonist SCH23390 (2 μM) but not by the D2-like antagonists sulpiride (10 μM) and eticlopride (10 μM). Using whole-recordings, dopamine was shown to induce membrane depolarisation. This depolarisation was caused either by a D1-like receptor mediated increase in a conductance which reversed at -34 mV, consistent with a non-specific cation conductance, or a D2-like receptor mediated decrease in conductance which reversed around -100 mV, consistent with a potassium conductance. Bath application of dopamine altered the pattern of the burst-firing produced by NMDA an apamin towards a more regular pattern. This effect was associated with a decrease in amplitude and ll1crease in frequency of TTX-resistant plateau potentials which underlie the burst activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates changes in the oscillatory dynamics in key areas of the pain matrix during different modalities of pain. Gamma oscillations were seen in the primary somatosensory cortex in response to somatic electrical stimulation at painful and non-painful intensities. The strength of the gamma oscillations was found to relate to the intensity of the stimulus. Gamma oscillations were not seen during distal oesophageal electrical stimulation or the cold pressor test. Gamma oscillations were not seen in all participants during somatic electrical stimulation, however clear evoked responses from SI were seen in everyone. During a train of electrical pulses to the median nerve and the digit, a decrease in the frequency of the gamma oscillations was seen across the duration of the train. During a train of electrical stimuli to the median nerve and the digit, gamma oscillations were seen at ~20-100ms following stimulus onset and at frequencies between 30-100Hz. This gamma response was found to have a strong evoked component. Following a single electrical pulse to the digit, gamma oscillations were seen at 100-250ms and between 60-95Hz and were not temporally coincident with the main components of the evoked response. These results suggest that gamma oscillations may have an important role in encoding different aspects of sensory stimuli within their characteristics such as strength and frequency. These findings help to elucidate how somatic stimuli are processed within the cortex which in turn may be used to understand abnormal cases of somatosensory processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Visually Evoked Subcortical Potential, a far-field signal, was originally defined to flash stimulation as a triphasic positive-negative-positive complex with mean latencies of P21 N26.2 P33.6 (Harding and Rubinstein 1980). Inconsistent with its subcortical source however, the signal was found to be tightly localised to the mastoid. This thesis re-examines the earlier protocols using flash stimulation and with auditory masking establishes by topographic studies that the VESP has a widespread scalp distribution, consistent with a far-field source of the signal, and is not a volume-conducted electroretinogram (ERG). Furthermore, mastoid localisation indicates auditory contamination from the click, on discharge of the photostimulator. The use of flash stimulation could not precisely identify the origin of the response. Possible sources of the VESP are the lateral geniculate body (LGB) and the superior colliculus. The LGB received 80% of the nerve fibres from the retina, and responds to high contrast achromatic stimulation in the form of drifting gratings of high spatial frequencies. At low spatial frequencies, it is more sensitive to colour. The superior colliculus is insensitive to colour and suppressed by contrast and responds to transitory rapid movements, and receives about 20% of the optic nerve fibres. A pattern VESP was obtained to black and white checks as a P23.5 N29.2 P34 complex in 93% of normal subjects at an optimal check size of 12'. It was also present as a P23.0 N28.29 P32.23 complex to red and green luminance balanced checks at 2o check size in 73% of subjects. These results were not volume-conducted pattern electroretinogram responses. These findings are consistent with the spatial frequency properties of the lateral geniculate body which is the considered source of the signal. With further work, the VESP may supplement electrodiagnosis of post-chiasmal lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study characterizes the visually evoked magnetic response (VEMR) to pattern onset/offset stimuli, using a single channel BTi magnetometer. The influence of stimulus parameters and recording protocols on the VEMR is studied with inferences drawn about the nature of cortical processing, its origins and optimal recording strategies. Fundamental characteristics are examined, such as the behaviour of successive averaged and unaveraged responses; the effects of environmental shielding; averaging; inter- and intrasubject variability and equipment specificity. The effects of varying check size, field size, contrast and refractive error on latency, amplitude and topographic distribution are also presented. Latency and amplitude trends are consistent with previous VEP findings and known anatomical properties of the visual system. Topographic results are consistent with the activity of sources organised according to the cruciform model of striate cortex. A striate origin for the VEMR is also suggested by the results to quarter, octant and annulus field stimuli. Similarities in the behaviour and origins of the sources contributing to the CIIm and CIIIm onset peaks are presented for a number of stimulus conditions. This would be consistent with differing processing event in the same, or similar neuronal populations. Focal field stimuli produce less predictable responses than full or half fields, attributable to a reduced signal to noise ratio and an increased sensitivity to variations in cortical morphology. Problems with waveform peak identification are encountered for full field stimuli that can only be resolved by the careful choice of stimulus parameters, comparisons with half field responses or with reference to the topographic distribution of each waveform peak. An anatomical study of occipital lobe morphology revealed large inter- and intrasubject variation in calcarine fissure shape and striate cortex distribution. An appreciation of such variability is important for VEMR interpretation, due to the technique's sensitivity to source depth and orientation, and it is used to explain the experimental results obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The locus of origin of the pattern evoked electroretinogram, (PERG), has been the subject of considerable discussion. A novel approach was adopted in this study to further elaborate the nature of the PERG evoked by pattern onset/offset presentation. The PERG was found to be linearly related to stimulus contrast and in particular was linearly related to the temporal contrast of the retinal image, when elicited by patterns of low spatial frequency. At high spatial frequencies the retinal image contrast is significantly reduced because of optical degradation. This is described by the eye's modulation transfer function (MTF). The retinal contrast of square wave grating and chequerboard patterns of increasing spatial frequency were found by filtering their Fourier transforms by the MTF. The filtered pattern harmonics were then resynthesised to constitute a profile of retinal image illuminance from which the temporal and spatial contrast of the image could be calculated. If the PERG is a pure illuminance response it should be spatially insensitive and dependent upon the temporal contrast of stimulation. The calculated loss of temporal contrast for finer patterns was expressed as a space-averaged temporal contrast attentuation factor. This factor, applied to PERGs evoked by low spatial frequency patterns, was used to predict the retinal illuminance response elicited by a finer pattern. The predicted response was subtracted from the recorded signal and residual waveform was proposed to represent specific activity. An additional correction for the attenuation of spatial contrast was applied to the extracted pattern specific response. Pattern specific responses computed for different spatial frequency patterns in this way are the predicted result of iso-contrast pattern stimulation. The pattern specific responses demonstrate a striking bandpass spatial selectivity which peaks at higher spatial frequencies in the more central retina. The variation of spatial sensitivity with eccentricity corresponds closely with estimated ganglion receptive field centre separation and psychophysical data. The variation of retinal structure with eccentricity, in the form of the volumes of the nuclear layers, was compared with the amplitudes of the computed retinal illuminance and pattern specific responses. The retinal illuminance response corresponds more closely to the outer and inner nuclear layers whilst the pattern specific response appears more closely related to the ganglion cell layer. In general the negative response transients correspond to the more proximal retinal layers. This thesis therefore supports the proposed contribution of proximal retinal cell activity to the PERG and describes techniques which may be further elaborated for more detailed studies of retinal receptive field dimensions.