991 resultados para SODIUM ALUMINOPHOSPHATE GLASS
Resumo:
Dynamic planar compressive experiments on a typical tough Zr-BMG (Bulk Metallic Glass) were carried out under impact velocity of 500-600 m/sec and strain rate of 10(6)/s. The fracture surface of samples exhibits different fracture patterns at different parts of the sample. At a corner close to the front loading boundary, fracture patterns from the free edge toward the centre changed from equiaxial veins in microscale to periodic corrugations in nanoscale; in the middle of the sample, the fracture surface contains glazed zones laid out orderly along the same boundary. FEM simulation was performed to investigate the stress distributions in the impacted sample under a short duration impact loading. It has revealed that the fracture patterns changing from the free edge toward the centre were resulted from the fracture modes' changing from the tensile dominant fracture to the shear dominant fracture. Whereas at the middle part of the sample, fracture initiated from several parallel shear bands propagating close to the same boundary is due to a large strain or much higher shear stress in this area.
Resumo:
Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.
Resumo:
Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.
Resumo:
Silica glass samples were implanted with 1.157 GeV Fe-56 and 1.755 GeV Xe-136 ions to fluences range from 1 x 10(11) to 3.8 x 10(12) ions/cm(2). Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E' center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E' center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E' center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (alpha band), 3.2 eV (beta band) and 2.67 eV (gamma band) when excited at 5 eV. The intensities of alpha and gamma bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of beta band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of alpha and gamma bands and electronic energy loss processes determine the bleaching of beta band in heavy ion irradiated silica glass. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A novel poly-l-arginine microcapsule was prepared due to its nutritional function and pharmacological efficacy. A high-voltage electrostatic droplet generator was used to make uniform microcapsules. The results show that the membrane strength and permeating property are both remarkably affected with the changes of sodium alginate concentration. With the sodium alginate concentration increasing, gel beads sizes increase from 233 mum to 350 mum, release ratio is also higher at the same time, but the membrane strength decreases.
Resumo:
Nickel catalyst supported on carbon was made by reduction of nickelous nitrate with hydrogen at high temperature. Ni/ C catalyst characterization was carried out by XRD. It was found that the crystal phase of NiS and NiS2 appeared in the impregnated catalyst. Ni/ C and Pt/ C catalysts gave high performance as the positive and negative electrodes of a sodium polysulfide/ bromine energy storage cell, respectively. The overpotentials of the positive and negative electrodes were investigated. The effect of the electrocatalyst loading and operating temperature on the charge and discharge performance of the cell was investigated. A power density of up to 0.64 W cm(-2) ( V = 1.07 V) was obtained in this energy storage cell. A cell potential efficiency of up to 88.2% was obtained when both charge and discharge current densities were 0.1 A cm(-2).
Resumo:
A novel protocol has been established to separate dsDNA fragments with high efficiency on glass chips by using an ultralow viscosity sieving matrix with added glucose. Low-molecular-weight hydroxypropylmethylcellulose (HPMC), with a viscosity nearly equivalent to that of water, was used to electrophoretically separate fluorescent inter-calator-labeled double-stranded DNA (dsDNA) fragments on microfluidic glass chips. In comparison with conventional sieving protocols, low-molecular-weight HPMC as sieving matrix could result in reduced running cost and analysis time, in addition to a comparable separation efficiency of dsDNA fragments. In this paper, the addition of glucose was investigated to enhance the separation of DNA in the lowest viscosity polymer evaluated. The effect of staining dye and field strength were also evaluated. At an applied electric field strength of 200 V/cm, satisfactory resolution of the PBR322/HaeIII DNA marker could be achieved within 4 min by using 2% HPMC-5 with 6% glucose added. Coelectrophoresing PCR product along with phiX174/HaeIII DNA sizing marker was also demonstrated by using the ultralow viscosity HPMC-5 solution on a glass chip.
Resumo:
The domain-structure of samples containing a series of starch/poly(sodium acrylate)-grafted superabsorbents, pure starch, pure poly(sodium acrylate), and blend of starch/poly(sodium acrylate) has been studied by high-resolution solid-state C-13 NMR spectroscopy at room temperature. The result shows that the crystallinity of starch decreases greatly in the grafted and blended samples.
Resumo:
The synthesis and reactivity of a series of sodium and rare-earth metal complexes stabilized by a dianionic N-aryloxo-functionalized beta-ketoiminate ligand were presented. The reaction of acetylacetone with 1 equiv of 2-amino-4-methylphenol in absolute ethanol gave the compound 4-(2-hydroxy-5-methylphenyl)imino-2-pentanone (LH2, 1) in high yield.